
BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS 1

Fast Dense Feature Extraction with CNNs
that have Pooling or Striding Layers

Christian Bailer1

christian.bailer@dfki.de

Tewodros A. Habtegebrial2

tewodros_amberbir.habtegebrial@dfki.de

Kiran Varanasi1

kiran.varanasi@dfki.de

Didier Stricker1,2

didier.stricker@dfki.de

1 German Research Center for Artificial
Intelligence (DFKI)
Kaiserslautern, DE

2 University of Kaiserslautern
Kaiserslautern, DE

Abstract

In recent years, many publications showed that convolutional neural network based
features can have a superior performance to engineered features. However, not much
effort was taken so far to extract local features efficiently for a whole image. In this paper,
we present an approach to compute patch-based local feature descriptors efficiently in
presence of pooling and striding layers for whole images at once. Our approach is generic
and can be applied to nearly all existing network architectures. This includes networks
for all local feature extraction tasks like camera calibration, Patchmatching, optical flow
estimation and stereo matching. In addition, our approach can be applied to other patch-
based approaches like sliding window object detection and recognition. We complete
our paper with a speed benchmark of popular CNN based feature extraction approaches
applied on a whole image, with and without our speedup, and example code (for Torch)
that shows how an arbitrary CNN architecture can be easily converted by our approach.

1 Introduction
While most CNNs are directly executed on complete images, there are also many important
tasks that require patch based CNN processing i.e. executing the same CNN several times
on neighboring, overlapping patches in an image. Most of these tasks fall into the category
of CNN based feature extraction [8, 10]. This includes tasks like camera calibration, Patch-
matching [2], optical flow estimation [1, 5] and stereo matching [13]. However, there are
also important patch based applications that are often not considered as feature extraction
tasks like sliding window object detection or recognition [7].

In all such patch based tasks there can be a lot of redundancy between the computations
of neighboring CNNs, as shown in Figure 1. If there are no pooling or striding layers this
redundancy in calculation can easily be avoided by simply executing a CNN which was
trained on a limited patch, directly once on the full image. However, with pooling layers the
situation is more complex. So far, authors avoided pooling or striding layers completely [13],

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Han, Leung, Jia, Sukthankar, and Berg} 2015

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Barnes, Shechtman, Goldman, and Finkelstein} 2010

Citation
Citation
{Bailer, Varanasi, and Stricker} 2016

Citation
Citation
{Gadot and Wolf} 2016

Citation
Citation
{Zbontar and LeCun} 2016

Citation
Citation
{Girshick} 2015

Citation
Citation
{Zbontar and LeCun} 2016

2 BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS

Figure 1: Left: A simple 1 dimensional CNN. Right: if this CNN is executed at each pixel
position of an image to create features for every position many intermediate layer results
are shared between networks. The numbers in nodes state how often a node is shared. The
red connections show how the red node is shared. Pooling with stride 2 halves the output
resolution. Thus, we need two pooling layers: the original one (blue) and one shifted by one
pixel (green) to avoid halving the output resolution.

simply performed the redundant calculations [5], or designed the approach in a way that it
can also work with more sparse results [6, 7]. The only work that we are aware of, that
tries to avoid the redundancy is our previous work [1], where the method for avoiding this
redundancy was not detailed.

In this paper, we present an elegant and generalizable solution to avoid this redundancy
even in the presence of pooling or striding layers. Our approach requires only layers perform-
ing transpose and reshape operations, in addition to ordinary CNN layers. Such operations
are available in nearly all machine learning frameworks. Furthermore, our approach can be
applied on nearly every existing CNN architecture.

Our paper is structured as follows: after presenting related work in Section 2, we present
our approach in Section 3. A benchmark of our approach is performed in Section 4. Finally,
in the appendix we present example source code for the deep learning framework Torch to
make our contribution even clearer.

2 Related Work

Besides extracting robust feature descriptors there was always also the need to compute these
features fast. A prominent example for this with engineered features is SURF [3]. While its
predecessor SIFT [9] uses Gaussian filters, SURF uses mean filters. This allows very fast
dense feature extraction with integral images at the cost of robustness.

In recent years, features based on convolutional neural networks [1, 8, 10, 11, 12] showed
not only promising, but mostly even superior results to engineered features. Zagoruyko and
Komodakis [12] compared different architectures to compare image patches. While they
did not perform a speed comparison they noticed that the Siamese architecture [4] with L2
distance is much faster than 2-channel based approaches. While the 2-channel architecture
requires running a matching CNN for every feature comparison, the Siamese architecture
only needs to run a CNN to create a feature but not to match. Once it is created it can be
matched by L2 distance. Simo-Serra et al. [10] further exploited this idea. However, like [12]
they just executed their approach on a predefined set of patches and did not present a fast
way to compute their features densely on a whole image. We show in this paper that their

Citation
Citation
{Gadot and Wolf} 2016

Citation
Citation
{Ge, McCool, Sanderson, and Corke} 2015

Citation
Citation
{Girshick} 2015

Citation
Citation
{Bailer, Varanasi, and Stricker} 2016

Citation
Citation
{Bay, Tuytelaars, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2006

Citation
Citation
{Lowe} 1999

Citation
Citation
{Bailer, Varanasi, and Stricker} 2016

Citation
Citation
{Han, Leung, Jia, Sukthankar, and Berg} 2015

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Zagoruyko and Komodakis} 2015

Citation
Citation
{Zagoruyko and Komodakis} 2015

Citation
Citation
{Bromley, Bentz, Bottou, Guyon, LeCun, Moore, S{ä}ckinger, and Shah} 1993

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Zagoruyko and Komodakis} 2015

BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS 3

approach can be adjusted accordingly.
To perform dense stereo matching Zbontar et. al [13] had to compute features densely

on the whole image. They avoided pooling and striding layers by using CNNs only on tiny
patches. While CNNs on smaller patches are less robust by themselves, techniques like
semi global matching for regularization still allowed them to get state-of-the art results. In
contrast, for tasks that cannot be that well regularized like optical flow estimation or image
calibration, one has to either follow our approach or do the redundant calculations.

In the application of object recognition the issue of fast dense feature extraction was
avoided by simply extracting features sparsely and using regression to find the exact object
bounding box [7]. While this approach is powerful we think that a real dense approach could
still improve results, especially in regions where many objects heap or simply to process also
less interesting regions with a powerful CNN.

Figure 2: In our approach we create the network CI from network CP. CI gives the same
result as executing the network CP on every patch of the image I, independently. However,
CI runs much faster as it avoids redundancy between overlapping patches.

3 Approach
In this section we describe our approach. If we have an input image I with width Iw and
height Ih, we can define patches P(x,y) with width Pw and height Ph centered at each pixel
position (x,y), x ∈ 0...Iw− 1,y ∈ 0...Ih− 1 in the input image I. Patches lying at the image
boundary like PI(0,0) require image padding as they contain pixels outside the image area.
Still it is common to include such patches to be able to extract features for boundary pixels,
as well. Of course it is also possible to only consider patches lying 100% inside the image
area. However, for simplicity we assume that there is a patch surrounding each image pixel.

In this paper we want to efficiently execute a CNN CP (which was trained on training
patches PT) on all patches P(x,y) in the input image I at once. The output vector O(x,y) =
CP(P(x,y)) is a k channel vector which belongs to the (Ih, Iw,k) dimensional output matrix
O that contains the results of CP executed on all image patches P(x,y).

Our goal is to create a network CI that directly calculates O from I, while avoiding
the redundancy that occurs when CP is executed on each image patch independently. The
architectural differences between CP and CI are shown in Figure 2. In the remainder of this
sections we describe the steps necessary to get from CP to CI , namely: in Section 3.1 we

Citation
Citation
{Zbontar and LeCun} 2016

Citation
Citation
{Girshick} 2015

4 BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS

describe how to deal with ordinary layers (without pooling or striding). In Section 3.2 we
detail how we create multipooling from pooling and finally in Section 3.3 we show how
mulipooling can be unwarped again. As notation for single layers of CI and CP we use LI
and LP, respectively.

3.1 Layers without pooling

With no striding or pooling the layers of CP and CI are identical i.e. Lnopool
P = Lnopool

I . This
is because their output does not depend on the spacial position of the input, but only on the
input values itself.

Figure 3: Patches P at different image positions (in red). The first patch P(x,y) requires
different 2x2 pooling (blue) than the second patch P(x+ 1,y) (green). However, the patch
P(x+2,y) can work with the original pooling again (blue). Overlapping positions of P(x,y)
and P(x+ 2,y) provide identical results and can thus be shared (bright yellow). Sharing
between patches that are using blue and the ones that are using green pooling is not possible.

3.2 Multipool to consider all locations
In contrast to ordinary layers striding and pooling layers must be handled explicitly. How-
ever, the kind of pooling has no influence on the handling and striding can be seen as a
special kind of pooling layer. Also, it does not make a difference if the pooling layer is
executed directly on the input image I or the outputs of one or several preceding layers. If
there are preceding layers we simply get a different input I∗ with patches P∗(x,y) that can be
processed by the remaining layers C∗P or C∗I , receptively.

Figure 3 visualizes the main issue of pooling: different patches P(x,y) require different
poolings even if they are direct neighbors like P(x,y) and P(x+1,y) and can thus not share
pooling outputs. However, with s being the pooling/stride size and u and v being integers
the patches P(x,y) and P(x+ su,y+ sv) still share pooling outputs for pixels that are shared
by both patches (yellow area in Figure 3). This creates all together s× s different pooling
situations that have to be computed independently on the input IL of our pooling layer. As a
s× s pooling layer reduces the output size to Iw/s, Ih/s (with input size Iw, Ih) it is clear that
s× s such outputs are required to still obtain an output O of spacial size Iw, Ih.

With SHIFTy,x(I) being a shifting operation that shifts the input I by x pixels rightwards
and y pixels downwards and Pools×s being a pooling operation with stride s×s we can define
a shifted pooling operation:

Poolx,y
s×s(I) = Pools×s(SHIFTy,x(I)) (1)

BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS 5

A set of shifted pooling operations with s×s shift distances we call multipooling. To convert
CP to CI we have to replace pooling layers Lpool

P ∈CP by multipooling layers Lmultipool
I ∈CI :

Lmultipool
I = {Pool0,0

s×s,Pool0,1
s×s, ...,Pool0,s−1

s×s , ...,Pools−1,0
s×s , ...,Pools−1,s−1

s×s } (2)

The different pooling outputs are stacked in an extra output dimension which we call M.
Samples in M are treated as independent samples by subsequent layers (similar to a batch
dimension). Note that M actually consists of two dimensions M = (y,x) as the multipooling
contains y as well as x shift (and the y shift only increases after processing all x shifts once).
If there is more than one pooling layer a subsequent pooling layer replicates the input dimen-
sion Min s× s times for Mout i.e. M will then consist of M = (yn,xn, ...,y1,x1) after n pooling
layers with y1,x1 belonging to the first pooling layer and yn,xn to the nth pooling layer.

Figure 4: Left: 2×2 = 4 output images from 2×2 multipooling. Right: the final unwarping
output O. We present a generic and efficient way of unwarping in Section 3.3.

Figure 5: In the problem (x2,x1 + 1) = (x2,x1)+ 2 and (x2,x1) = (x2,x1)+ 1 i.e. the step
size for the inner dimension x1 is larger. This can be fixed by transposing (swapping) both
dimensions . A reinterpretation of the memory (reshaping) allows then to reduce it to a single
x dimension.

3.3 Unwarping
With one multipool layer, we get an output W with dimensions W = (M = s×s, Ih/s, Iw/s,k),
which we want to unwarp to the final output O = (Ih, Iw,k). Figure 4 shows this unwarping
for 2×2 pooling. Direct unwarping is complex especially with several pooling layers. This
might be a reason why previous work avoided pooling layers. However, if we observe the
problem in dimension space it can easily be solved with solely transpose and reshape opera-
tions. Such operations are supported by most deep learning frameworks as layers.

Let us denote y∗ = Ih/s,x∗ = Iw/s (and M = (y1,x1)) for a single pooling layer. Then
the dimensions of W can be written as W = (y1,x1,y∗,x∗,k). As can be seen in Figure 5

6 BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS

we have to bring the inner x and y dimensions to the right and the outer ones to the left.
The pooling is the inner dimension as it moves pixel by pixel. Thus, O can be written as

O = (Ih = (y∗,y1), Iw = (x∗,x1),k)
reshape
= (y∗,y1,x∗,x1,k).

For the more general case of n pooling layers y∗ = Ih/(s1...sn), x∗ = Iw/(s1...sn),
W = (M = (yn,xn...y1,x1),y∗,x∗,k) we have to get to O = (y∗,yn, ...,y1,x∗,xn, ...,x1,k). An
efficient and generic way to do this transformation only with transpose and reshape oper-
ations is as follows: first we have to transpose (M,y∗,x∗,k) to (y∗,x∗,M,k) . The naive
way requires two transpose operations. However, with reshaping it can be done in one:
(M,y∗,x∗,k)→ (M, f ∗,k)→ (f ∗,M,k)→ (y∗,x∗,M,k). Note that reshaping requires barely
any runtime as it is just a reinterpretation of the memory. Then, we do the following:

1. start: (y∗,x∗,M,k)

2. reshape M to its contents : (y∗,x∗,yn,xn...y1,x1,k)

3. do n times

4. transpose: (dim 2, dim 3)

5. reshape: fuse (dim 1, dim 2), fuse (dim 3, dim 4)

6. end

After performing this algorithm we have determined O.

3.4 Use in practice at the example of torch
In practice things can differ from theory. In Torch,1 for instance, the channel dimension is
before the spatial dimension i.e. W = (M,k,y∗,x∗). Still we can do our initial step with only
one transpose operation: (M,k,y∗,x∗)→ (M, f ∗)→ (f ∗,M)→ (k,y∗,x∗,M). To obtain a
dimension for M we use an unsqeeze layer before the first CNN layer. An example torch
implementation can be found in the appendix.

4 Experiments
In this section we present benchmark results of our improved network architecture CI com-
pared to CP running on all patches of an image. The experiments are performed on a GeForce
GTX TITAN X. Readers who want to replicate our modify our experiments can use our
benchmark code provided in the supplementary material. We do not count the time to extract
patches from the image for CP, but only the pure network processing time, although includ-
ing this preprocessing step only required for CP would increase our speedup even more. As
can be seen in Table 1, the execution time of CP roughly scales (as expected) linearly with
the image pixels. CI on the other hand barely takes more time for larger images. We think
that this is due to overhead and because the GPU cores are not fully occupied by CI . In the-
ory it should for large images also scale linearly with image pixels. On the other hand, the
memory consumption of CI increases nearly linearly. If not enough memory is available the
input image can be split into parts and each part can be processed individually. This requires
some – in practice barley relevant – computational redundancy. The memory requirement
of CP depends on the number of patches processed in parallel. Processing more patches is

1http://torch.ch/

BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS 7

Architecture Image Size CP CI Speedup memory CI
Simo-Serra et al. [10] 72 x 48 1.25 s 0.099 s 12.6 times 348 MB
Simo-Serra et al. [10] 360 x 240 28.42 s 0.103 s 275 times 1142 MB
Simo-Serra et al. [10] 720 x 480 112.76 s 0.116 s 972 times 3448 MB
Simo-Serra et al. [10] 1080 x 720 252.97 s 0.117 s 1550 times 7222 MB

Zagoruyko et al.[12](Siamese L2) 1080 x 720 223.55 s 0.127 s 1760 times 11495 MB
Bailer et al.[1] (fast arch) 864 x 576 363.45 s 0.113 s 3216 times 9850 MB

Table 1: Speed benchmark for CP and CI . The latter performs much faster especially on
larger images. We provide source code for the benchmarks in our supplementary material to
prove reproducibility. For CP memory is not a big deal (see text).

usually faster, but very large amounts do not have much influence anymore, as GPU cores
are limited (still we used large amounts for the fastest possible runtime).

As can also be seen in the table, architectures like [1] that perform heavy convolution
can be speed up a little more than architectures that perform heavy pooling like [10, 12].

5 Conclusion
In this paper, we presented a novel approach to convert nearly arbitrary CNN architectures
for fast execution on the whole image in a sliding window manner. We showed that with
our approach significant speedups can be achieved – dense feature maps of state-of-the-art
CNN based feature descriptors can be created in barely more than 0.1s for a whole image.
This is very interesting considering that CNN based features are nowadays more robust than
most computationally intensive traditional features – and with our approach, it is now also
possible to compute them very fast densely.

By providing a straightforward implementation, we hope to convince authors of future
works that there is no need to perform unnecessary, redundant calculations or to avoid pool-
ing layers. This is particularly relevant for dense-feature computations on the whole image.

Appendix: Torch example
Here we present some functions that allow to convert an arbitrary CNN CP to an architecture
CI . An example implementation of [10] shows the usage of these functions. Note: [10] uses
mean-pooling, but for simplicity we use the much more popular max-pooling in our example.
Using mean pooling instead is straightforward.

−−−−−−−−−−−−−− Torch f u n c t i o n a l i t y o f our a p p r o a c h:−−−−−−−−−−−−

−− Adds padd ing t o t h e image and adds t h e d i m e s i o n M
f u n c t i o n m u l t i P o o l P r e p a r e (patchY , patchX)

padx = patchX−1
pady = patchY−1
l o c a l n e t = nn . S e q u e n t i a l ()
n e t : add (nn . Padd ing (2 ,− t o r c h . c e i l (pady / 2)))
n e t : add (nn . Padd ing (3 ,− t o r c h . c e i l (padx / 2)))
n e t : add (nn . Padd ing (2 , t o r c h . f l o o r (pady / 2)))

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Zagoruyko and Komodakis} 2015

Citation
Citation
{Bailer, Varanasi, and Stricker} 2016

Citation
Citation
{Bailer, Varanasi, and Stricker} 2016

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Zagoruyko and Komodakis} 2015

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer} 2015

8 BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS

n e t : add (nn . Padd ing (3 , t o r c h . f l o o r (padx / 2)))
n e t : add (nn . Unsqueeze (1))
r e t u r n n e t

end

−− Layer p r e p a r e s unwarp ing . Added a f t e r t h e ne twork
f u n c t i o n unwarpPrepa re ()

l o c a l n e t = nn . S e q u e n t i a l ()
n e t : add (nn . View (−1) : setNumInputDims (3)) −−p u t s dim 2 ,3 ,4 t o one dim
n e t : add (nn . T r a n s p o s e ({1 ,2}))
r e t u r n n e t

end

−− The a c t u a l unwarp ing . See example f o r usage
−− curImg = imgSize / (a l l s t i l l e x i s t i n g s t r i d e s)
f u n c t i o n unwarpPool (outChans , curImgW , curImgH , dW, dH)

l o c a l n e t = nn . S e q u e n t i a l ()
n e t : add (nn . View (outChans , curImgH , curImgW , dH ,dW,−1))
n e t : add (nn . T r a n s p o s e ({ 3 , 4 })) −− {3 ,4} n o t {2 ,3} as k i s f i r s t dim
r e t u r n n e t

end

−− R e p l a c e s normal maxpool ing
f u n c t i o n mul t iMaxPoo l ing (kW, kH ,dW, dH)

l o c a l c1 = nn . DepthConcat (1)
f o r i = 0 ,dH−1 do

f o r j = 0 ,dW−1 do
c1 : add (nn . S p a t i a l M a x P o o l i n g (kW, kH ,dW, dH,− j ,− i))

end
end
r e t u r n c1

end

−−−−−−−−−−−−−−−−−−−−−− Examaple usage:−−−−−−−−−−−−−−−−−−−−−−

sL1 = 2 −− s t r i d e 1 . p o o l i n g l a y e r
sL2 = 3 −− s t r i d e 2 . p o o l i n g l a y e r
sL3 = 4 −− s t r i d e 3 . p o o l i n g l a y e r

−− image h e i g h t and wid th s h o u l d be m u l t i p l e s o f sL1∗ sL2∗ sL3
−− i f t h i s i s n o t t h e c a s e r i g h t / downwards padd ing s h o u l d be added .
imH = . . . −− image h e i g h t
imW = . . . −− image wid th

pH = 64 −− p a t c h h e i g h t
pW = 64 −− p a t c h wid th

outChans = 128 −− o u t p u t c h a n n e l s (l a s t l a y e r)

−− The p a t c h ne twork (C_P) :
n e t 1 = nn . S e q u e n t i a l ()

BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS 9

n e t 1 : add (nn . S p a t i a l C o n v o l u t i o n (3 , 32 , 7 , 7))
n e t 1 : add (nn . S p a t i a l M a x P o o l i n g (sL1 , sL1 , sL1 , sL1))
n e t 1 : add (nn . TanH ())
n e t 1 : add (nn . S p a t i a l C o n v o l u t i o n (3 2 , 64 , 6 , 6))
n e t 1 : add (nn . S p a t i a l M a x P o o l i n g (sL2 , sL2 , sL2 , sL2))
n e t 1 : add (nn . TanH ())
n e t 1 : add (nn . S p a t i a l C o n v o l u t i o n (6 4 , outChans , 5 , 5))
n e t 1 : add (nn . S p a t i a l M a x P o o l i n g (sL3 , sL3 , sL3 , sL3))
n e t 1 : add (nn . TanH ())

−− The image ne twork (C_I) :
n e t 2 = nn . S e q u e n t i a l ()
n e t 2 : add (m u l t i P o o l P r e p a r e (pH ,pW))
n e t 2 : add (n e t 1 . modules [1])
n e t 2 : add (mul t iMaxPoo l ing (sL1 , sL1 , sL1 , sL1))
n e t 2 : add (n e t 1 . modules [3])
n e t 2 : add (n e t 1 . modules [4])
n e t 2 : add (mul t iMaxPoo l ing (sL2 , sL2 , sL2 , sL2))
n e t 2 : add (n e t 1 . modules [6])
n e t 2 : add (n e t 1 . modules [7])
n e t 2 : add (mul t iMaxPoo l ing (sL3 , sL3 , sL3 , sL3))

n e t 2 : add (unwarpPrepa re ())
n e t 2 : add (unwarpPool (outChans , imH / (sL1∗ sL2∗ sL3) , imW / (sL1∗ sL2∗ sL3) ,
sL3 , sL3))
n e t 2 : add (unwarpPool (outChans , imH / (sL1∗ sL2) , imW / (sL1∗ sL2) , sL2 , sL2))
n e t 2 : add (unwarpPool (outChans , imH / sL1 , imW/ sL1 , sL1 , sL1))
n e t 2 : add (nn . View(−1 ,imH , imW)

References
[1] Christian Bailer, Kiran Varanasi, and Didier Stricker. Cnn-based patch matching for

optical flow with thresholded hinge loss. arXiv preprint arXiv:1607.08064, 2016.

[2] Connelly Barnes, Eli Shechtman, Dan B Goldman, and Adam Finkelstein. The gener-
alized patchmatch correspondence algorithm. In ECCV, pages 29–43. Springer, 2010.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
Computer vision–ECCV 2006, pages 404–417, 2006.

[4] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff
Moore, Eduard Säckinger, and Roopak Shah. Signature verification using a siamese
time delay neural network. International Journal of Pattern Recognition and Artificial
Intelligence, 7(04):669–688, 1993.

[5] David Gadot and Lior Wolf. Patchbatch: a batch augmented loss for optical flow.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4236–4245, 2016.

10 BAILER ET. AL: FAST FEATURE EXTRACTION WITH CNNS WITH POOLING LAYERS

[6] ZongYuan Ge, Chris McCool, Conrad Sanderson, and Peter Corke. Modelling lo-
cal deep convolutional neural network features to improve fine-grained image classi-
fication. In Image Processing (ICIP), 2015 IEEE International Conference on, pages
4112–4116. IEEE, 2015.

[7] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1440–1448, 2015.

[8] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C Berg.
Matchnet: unifying feature and metric learning for patch-based matching. In Computer
Vision and Pattern Recognition (CVPR), 2015.

[9] David G Lowe. Object recognition from local scale-invariant features. In International
Conference on Computer Vision (ICCV), 1999.

[10] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, and
Francesc Moreno-Noguer. Discriminative learning of deep convolutional feature point
descriptors. In International Conference on Computer Vision (ICCV), 2015.

[11] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Learning local feature
descriptors using convex optimisation. Pattern Analysis and Machine Intelligence
(PAMI), 36(8):1573–1585, 2014.

[12] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via
convolutional neural networks. In Computer Vision and Pattern Recognition (CVPR),
2015.

[13] Jure Zbontar and Yann LeCun. Stereo matching by training a convolutional neural
network to compare image patches. Journal of Machine Learning Research, 17(1-32):
2, 2016.

