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Abstract

We propose a novel framework for the discretisation of multi-label problems on ar-
bitrary, continuous domains. Our work bridges the gap between general FEM discreti-
sations, and labeling problems that arise in a variety of computer vision tasks, including
for instance those derived from the generalised Potts model. Starting from the popular
formulation of labeling as a convex relaxation by functional lifting, we show that FEM
discretisation is valid for the most general case, where the regulariser is anisotropic and
non-metric. While our findings are generic and applicable to different vision problems,
we demonstrate their practical implementation in the context of semantic 3D reconstruc-
tion, where such regularisers have proved particularly beneficial. The proposed FEM
approach leads to a smaller memory footprint as well as faster computation, and it con-
stitues a very simple way to enable variable, adaptive resolution within the same model.

1 Introduction
A number of computer vision tasks, such as segmentation, multiview reconstruction, stitch-
ing and inpainting, can be formulated as multi-label problems on continuous domains, by
functional lifting [7, 10, 24, 30, 32]. A recent example is semantic 3D reconstruction (e.g.
[3, 15]), which solves the following problem: Given a set of images of a scene, reconstruct
both its 3D shape and a segmentation into semantic object classes. The task is particularly
challenging, because the evidence is irregularly distributed in the 3D domain; but it also
possesses a rich, anisotropic prior structure that can be exploited. Jointly reasoning about
shape and class allows one to take into account class-specific shape priors (e.g., building
walls should be smooth and vertical, and vice versa smooth, vertical surfaces are likely to
be building walls), leading to improved reconstruction results. So far, models for the men-
tioned multi-label problems, and in particular for semantic 3D reconstruction, have been
limited to axis-aligned discretisations. Unless the scenes are aligned with the coordinate
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Figure 1: Semantic 3D model, estimated from aerial views with our FEM method.

axes, this leads to an unnecessarily large number of elements. Moreover, since the evidence
is (inevitably) distributed unevenly in 3D, it also causes biased reconstructions. Thus, it is
desirable to adapt the discretisation to the scene content (as often done for purely geometric
surface reconstruction, e.g. [21]).

Our formulation makes it possible to employ a finer tesselation in regions that are likely
to contain a surface, exploiting the fact that both high spatial resolution and high numerical
precision are only required in those regions. Our discretisation scheme leads to a smaller
memory footprint and faster computation, and it constitues a very simple technique to al-
low for arbitrary adaptive resolution levels within the same problem. I.e., we can refine or
coarsen the discretisation as appropriate, to adapt to the scene to be reconstructed. While
our scheme is applicable to a whole family of finite element bases, we investigate two par-
ticularly interesting cases: Lagrange (P1) and Raviart-Thomas elements of first order. We
further show that the grid-based voxel discretisation is a special case of our P1 basis, such
that minimum energy solutions of “identical” discretisations (same vertex set) are equivalent.

2 Related Work
Since the seminal work [11] volumetric reconstruction from image data has evolved remark-
ably [9, 13, 17, 18, 19, 25, 39, 42]. Most methods use depth maps or 2.5D range scans
for evidence [46, 47], represent the scene via an indicator or signed distance function in the
volumetric domain, and extract the surface as its zero level set, e.g., [26, 38].

Joint estimation of geometry and semantic labels, which had earlier been attempted only
for single depth maps [22], has recently emerged as a powerful extension of volumetric 3D
reconstruction from multiple views [1, 3, 15, 20, 35, 40, 41]. A common trait of these
works is the integration of depth estimates and appearance-based labeling information from
multiple images, with class-specific regularisation via shape priors.

Multi-label problems are in general NP-hard, but under certain conditions on the pair-
wise interactions, the original non-convex problem can be converted into a convex one via
functional lifting and subsequent relaxation, e.g. [7]. This construction was further extended
to anisotropic (direction-dependent) regularisers [37]. Moreover, [48] also relaxed the re-
quirement that the regulariser forms a metric on the label set, yet its construction can only be
applied after discretisation [24]. In this paper, we consider the relaxation in its most general
form [48], but are not restricted to it. The latter construction is also the basis to the model
of [15], whose energy model we adapt for our semantic 3D reconstruction method. Their
voxel-based formulation can be seen as a special case of our discretisation scheme.

For (non-semantic) surface reconstruction, several authors prefer a data-dependent dis-
cretisation, normally a Delaunay tetrahedralisation of a 3D point cloud [16, 21, 43]. The oc-
cupancy states of the tetrahedra are found by discrete (binary) labeling, and the final surface
is composed of the triangles that separate different labels. Loosely speaking, our proposed
methodology can be seen either as an extension of [15] to arbitrary simplex partitions of the
domain; or as an extension of [21] to semantic (multi-label) reconstruction.
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We note that regular voxel partitioning of the volume leads to a high memory consump-
tion and computation time. Yet, we are essentially reconstructing a 2D manifold in 3D space,
and this can be exploited to reduce run-time and memory footprint. [20] use an octree in-
stead of equally sized voxels to adapt to the local density of the input data. [3] go one step
further and propose an adaptive octree, where the discretisation is refined on-the-fly, during
optimisation. In our framework the energy is independent of the discretisation, it can thus be
combined directly with such an adaptive procedure.

Also volumetric fusion via signed distance functions [28] benefits from irregular tes-
selations of 3D space, e.g., octrees [36] or hashmaps [29]. In contrast to our work, these
target real-time reconstruction and refrain from global optimisation, instead locally fusing
depth maps. Their input normally is a densely sampled, overcomplete RGB-D video-stream,
whereas we deal with noisy and incomplete inputs. To achieve high-quality reconstructions
in our setting, we incorporate semantic information, leading to a multi-label problem.

Our work is based on the finite element method (FEM), e.g. [5, 33]. Introduced by
Ritz [34] more than a century ago, and refined by Galerkin and Courant [8], FEM serves to
numerically solve variational problems, by partitioning the domain into finite, parametrised
elements. In computer vision FEM has been applied in the context of level-set methods [45]
and for Total Variation [2]. To our knowledge, we are the first to apply it to multi-labeling.

3 Method
The multi-labeling problem [7, 24, 37, 48] in the domain Ω ⊂ Rd is defined by finding m
labeling functions xi : Ω→{0,1}, i = 1 . . .m as the solution of:

inf
xi

m

∑
i=1

∫
Ω

ρ
i(z)xi(z)dz+ J(xi), s. t.

m

∑
i=1

xi(z) = 1 ∀z ∈Ω, (1)

where ρ models the data term for a specific label at location z ∈ Ω and J denotes a convex
regularisation functional that enforces the spatial consistency of the labels. One prominent
example is to chose J := ‖·‖2, known as Total Variation, which penalises the perimeter of
the individual regions [7, 30]. Note that in the two-label case (Potts model), this relaxation is
exact after thresholding with any threshold from the open unit interval [7]. Although we are
ultimately interested in non-metric regularisation, we start with the continuous, anisotropic
model [37], and postpone the extension to the non-metric case to Sec. 3.5.

3.1 Convex Relaxation
The continuous model allows for an anisotropic regulariser in J: label transitions can be
penalised on the area of the shared surface, as well as on the surface normal direction. This
is achieved with problem-specific 1-homogeneous functions that emerge from convex sets,
so called Wulff-shapes. A relaxation of xi(z) ∈ {0,1} to xi(z) ∈ [0,1] then leads to a convex
energy, which can be written as the following saddle point problem, with primal functions x
and dual functions λ :

min
xi

max
λ i ∑

i

∫
Ω

ρ
i(z)xi(z)+〈xi(z),∇·λ i(z)〉dz, s.t. λ

i(z)−λ
j(z)∈W i j,

m

∑
i=1

xi(z)=1,xi(z)≥0. (2)

The constraints have to be fulfilled for all z ∈ Ω. In addition to the primal variables xi,
we have introduced the dual vector-field λ i : Rd → Rd , whose pairwise differences are
constrained to lie in the convex sets (Wulff-shapes) W i j. By letting these shapes take an
anisotropic form, one can then encode scene structure, e.g. [15, 37]. For our problem we
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demand Neumann conditions at the boundary of Ω, i.e. 〈λ i,ν〉 = 0,∀z ∈ ∂Ω, because the
scene will continue beyond our domain (ν is the normal of the domain boundary ∂Ω).

3.2 Finite Element Spaces
Here, we can only informally introduce the basic idea of FEM and explain its suitability for
problems of the form (2). We refer to textbooks [5, 12, 23] for a deeper and formal treatment.

One way to solve (2) is to approximate it at a finite number of regular grid points, using
finite differences. FEM instead searches for a solution in a finite-dimensional vector space;
this trial space is a subspace of the space in which the exact solution is defined. To that
end, one chooses a suitable basis for the trial space, with basis functions of finite support, as
well as an appropriate test function space. FEM methods then find approximate solutions to
variational problems by identifying the element from the trial space that is orthogonal to all
functions of the test function space. For our saddle-point problem, we can instead identify
the trial space with our primal function space and the test space with its dual counterpart.
Now, we can apply the same principles, and after discretisation our solution corresponds to
the continuous solution defined by the respective basis. As (2) is already a relaxation of the
original problem (1), we do not present an analysis of convergence at this point. Instead, the
reader is referred to [2] for an introduction to this somewhat involved topic.

In order to choose a space with good approximation properties and suitable basis func-
tions, we tesselate our domain into simplices. More formally, we define M={F,V,S} to be
a simplex mesh with vertices v∈V,v∈Rd , faces f ∈F defined by d, and simplices s∈ S,
defined by d+1 vertices that partition Ω: ∪ksk = Ω,sl ∩ sk = fl,k∈F – i.e. two adjacent sim-
plices share only a single face. In this work, for a specific set of vertices V , we select M to
be the corresponding Delaunay tetrahedralisation of Ω and only consider explicit bases. In
particular, we focus on the Lagrangian (P1) basis, which we use in the following to derive
our framework; and on the Raviart-Thomas (RT) basis. Details for the latter are given in the
supplementary material. The main difference between them is that P1 leads to piecewise lin-
ear solutions, which must be thresholded, while RT leads to a constant labeling function per
simplex, similar to discrete MAP solutions on CRFs. We note that constant labeling can lead
to artefacts, such that the adaptiveness of the FEM model becomes even more important.

The idea of both derivations is similar: (i) select a basis for our primal (P1) or dual (RT)
variable set, (ii) find a suitable form via the divergence theorem and Fenchel duality, (iii)
extend to the non-metric case, following a principle we term ”label mass preservation”.

3.3 Lagrange Elements
The Lagrange Pk(M) basis functions describe a conforming polynomial basis of order k+1
on our simplex mesh M, i.e. its elements belong to the Hilbert space of differentiable func-
tion with finite Lebesgue measure on the domain Ω: Pk(M)⊂ H1(Ω) := {p ∈ L2(Ω),∇p ∈
(L2(Ω)d)}. We are interested in the Lagrange basis of first order, P1(M):

P1(M):={p : Ω→R|p∈C(Ω), p(x) :=∑
s∈S

cTs x+ds,cs∈Rd ,ds∈R, if x∈s and 0 else}. (3)

We construct our linear basis with functions that are defined for each vertex v of a simplex s
and can be described in local form with barycentric coordinates:

p1
s,v(x) := αv with x = ∑

v∈s
αvv, ∑

v∈s
αv = 1, αv ≥ 0 if x ∈ s and 0 else. (4)

In each simplex, one can define a scalar field φs(x) ∈ R and compute a gradient in this basis
that will be constant per simplex s (cf. Fig. 2):
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Figure 2: Left: Illustration of P1 basis function shape. Middle: Scalar field defined as a
convex combination of basis coefficients. Right: Gradient definition in a simplex (5).

φs(x) := ∑
v∈s

φv p1
s,v and ∇φs = ∑

v∈s
φvJv, (5)

with coefficients φv ∈R. Jv ∈Rd denotes a vector that is normal to the face fv opposite node
v, has length | fv||s|d , and points towards the simplex centre. | fv| denotes the area of the face fv,
and |s| the volume of the simplex s (cf . Fig. 2 and supplementary material).

3.4 Discretisation
To apply our Lagrange basis to (2) we first make use of the divergence theorem:∫

Ω

〈xi(z),∇·λ i(z)〉dz =
∫

Ω

〈∇xi(z),λ i(z)〉dz−
∫

∂Ω

〈ν(z),λ i(z)〉dz︸ ︷︷ ︸
=0

. (6)

The latter summand vanishes by our choice of λ . Our approach for a discretisation in the
Lagrange basis is to choose the labeling function xi ∈ P1(M). This implies that our dual
space consists of constant vector-fields per simplex: λ i

s ∈ Rd . To fulfill the constraint set in
(2) we have to verify that, per simplex, the λ i

s lie in the respective Wulff-shape. The simplex
constraints on the xi have to be modeled per vertex. According to (4), the labeling functions
are convex combinations of their values at the vertices and thus stay within the simplex.

We also have to convert the continuous data costs ρ i into a cost per vertex ρ i
v, which

can be achieved by convolving the continuous cost with the respective basis function: ρ i
v :=∫

Ω ∑s∈N (v) φs(x)ρ i(x)dx. In practice, the integral can be computed by sampling ρ . Integrat-
ing the right hand side in (6) over the simplex s leads to a weighting with its volume |s| and
the energy (2) in the discrete setting becomes:

min
xi

max
λ i ∑

v,i
ρ

i
vxi

v+∑
s,i
|s|〈∇xi,λ i

s〉 s.t. (λ i
s−λ

j
s)∈W i j ∀i< j, s∈ S,

m

∑
i=1

xi
v=1, xi

v≥0 ∀v∈V. (7)

3.5 Non-metric extension
To start with, we note that a non-metric model does not exist in the continuous case [27]
and our extension works only after the discretisation into the FEM basis. Please refer to
the supplementary material for an in-depth discussion. Note that our label set of semantic
classes does not have a natural order (in contrast to, e.g., stereo depth or denoised brightness);
and also the direction-dependent regulariser is unordered and does not induce a metric cost.
To allow for non-metric regularisation we transform the constraint set (λ i−λ j ∈W i j), by
introducing auxiliary variables zi j and Lagrange multipliers yi j, and use Fenchel-Duality:

max
λ i

s ,z
i j
s

min
yi j

s
∑
i< j
〈(λ i

s−λ
j

s )− zi j,yi j
s 〉−δW i j(zi j

s ) = max
λ i

s

min
yi j

s
∑
i< j
−〈(λ i

s−λ
j

s ),y
i j
s 〉+ ||yi j

s ||W i j . (8)

The dual functions of the indicator functions for the convex sets W i j are 1-homogeneous,
of the form || · ||W i j := supw∈W i j wT·. Recall that our label costs are not metric: ∀i< j< k :
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Figure 3: Left: Without our non-metric extension, optimisation w.r.t. (7) can lower transition
costs by inserting another label (here 1 between 0 and 2). Right: A solution is to split the
gradients of the indicator functions and use direction-dependent variables xi j.

|yi j|W i j + |y jk|W jk ≥ |yik|W ik , does not hold. It was shown [48] that a regulariser of the form
(8) transforms any non-metric cost to the metric case. Figure 3 shows an example. Here,
an expensive transition between labels 0 and 2 will be replaced by two cheaper transitions
0–1 and 1–2. To prevent this, we replace the yi j with direction dependent variables xi j: We
rearrange (8) and combine the first summand with the regulariser from (7) to arrive at the
following equations (for now ignoring |s|):

∑
s

∑
i
〈∇xi,λ i

s〉−∑
i
〈λ i

s ,∑
j 6=i

(
yi j

s [i < j]− y ji
s [i > j]

)
〉,

with [·] denoting Iverson brackets. Let xi j := [yi j]+ and x ji := [−y ji]+, where [·]+ :=max(0, ·).
Expanding the gradient (5) we get, per simplex s,

∑
i

∑
v∈s

λ
i
sxi

v([Jv]+− [−Jv]+)−〈λ i
s , ∑

j:i6= j
(xi j− x ji)〉, (9)

which we analyse further to achieve non-metric costs. It was observed in [48] that the xi j ∈
Rd can be interpreted as encoding the “label mass” that transitions from label i to label j
in a specific direction. Positivity constraints (by definition) on the xi j avoid the transport of
negative label mass. To anchor transport of mass on the actual mass of label i present at a
vertex, we introduce the variables xii for the mass that remains at label i, and split the above
constraints into two separate sets with the help of additional dual variables θ :

λ
i
s(∑

v∈s
xi

v[Jv]+−∑
j

xi j
s )+θ

i
s(∑

v∈s
xi

v[−Jv]+−∑
j

x ji
s )+∑

i, j
δ≥0(xi j

s ). (10)

Note that this construction is only possible because our elements (simplices) are of strictly
positive volume, in contrast to zero sets in Ω w.r.t. the Lebesgue measure. Finally, we can
write down our discrete energy in the Lagrange basis defined on the simplex mesh M:

min
xi,xi j

max
λ i,θ i ∑

v∈V
∑

i
ρ

i
vxi

v +δ∆(xi
v)+∑

i< j
∑
s∈S
|s|||xi j

s − x ji
s ||W i j+

∑
s

∑
i

θ
i
s(∑

v∈s
xi

v[−Jv]+−∑
j

x ji
s )+∑

s
∑

i
λ

i
s(∑

v∈s
xi

v[Jv]+−∑
j

xi j
s )+∑

i, j
δ≥0(xi j

s ),
(11)

where we have moved the weighting with |s| from the constraint set to the regulariser, and
denote by δ∆(·) the indicator function of the unit simplex.

4 Semantic Reconstruction Model
A prime application scenario for our FEM multi-label energy model (11) is 3D semantic
reconstruction. In particular, we focus on an urban scenario and let our labeling functions
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Figure 4: (a): Wulff-shape (red) with isolines. (b): Minkowski sum of two Wulff-shapes.
(c): Simplices are split after inserting new vertices (blue) close to the surface (green). Right:
Initialisation of vertices after refinement. (d): Finite differences on a regular grid ([15]) only
cover constraints in green areas, the P1 basis covers all of the domain Ω.

encode freespace (i = 1), building wall, roof, vegetation or ground. Objects that are not
explicitly modeled are collected in an extra clutter class. We define the data cost ρ at a 3D-
point x ∈Ω as in [15]: project x into the camera views c ∈ C, and retrieve the corresponding
depth d̂c(x) and class likelihoods σ i

c(x) from the image space. The σ i are obtained from a
MultiBoost classifier. For the depth we look at the difference between the actual distance
dc(x) to the camera and the observed depth: d(x,c) := dc(x)− d̂c(x). For the freespace label
we always set the cost to 0, for i 6= 1 we define:

ρ
i(x) := ∑

c∈C
σ

i
c(x)[(k−1)ε ≤ d(x,c)≤ kε]+β [|d(x,c)| ≤ kε]sign(d(x,c)). (12)

This model assumes independence of the per-pixel observations, and exponentially dis-
tributed inlier noise in the depthmaps, bounded by a parameter kε (k=3 in practice). It is
essentially a continuous version of [15], see that paper for details. The parameter ε sets a
lower bound for the minimal height of the simplices in the tesselation, and thus defines the
target resolution. The discretisation of the data cost involves a convolution with the respec-
tive basis functions, which can be approximated via sampling. Please refer to the supplemen-
tary material for details. The Wulff-shapes W i j in (11) are given as the Minkowski sum of the
L2-Ball, B2

κ i j := {x ∈Rd |‖x‖2 ≤ κ i j} and an anisotropic shape Ψi j: W i j := Ψi j⊕B2
κ i j . In the

isotropic part, κ i j contains the neighbourhood statistics of the classes. The anisotropic part
Ψi j models the likelihood of a transition between classes i and j in a certain direction. Fig. 4
(a,b) shows an example. For our case we prefer flat, horizontal surfaces at the following label
transitions: ground-freespace, ground-building, building-roof, ground-vegetation and roof-
freespace. A second prior prefers vertical boundaries for the transitions building-freespace
and building-vegetation. More details on the exact form can be found in [15].

The energy (11) is already in primal-dual form, such that we can apply the minimisation
scheme of [6], with pre-conditioning [31]. That numerical scheme requires us to project
onto shapes that are Minkowski sums of convex sets. In our case, the sets are simple and
the projection onto each shape can be performed in closed form. We employ a Dykstra-
like projection scheme [4], which avoids storing additional variables and proves remarkably
efficient, see supplementary material. We also project the labeling functions xi directly onto
the unit simplex [44]. In order to extract the transition surface, we employ a variant of
marching tetrahedra (triangles) [38], using the isolevel at 0.5 for each label.

We conclude with two interesting remarks. First, note that a tesselation with a regular
grid [15] can be seen as a simplified version of our discretisation in the P1 Lagrange basis. In
Fig. 4d we consider the 2D case of the regular grid used in [15]. Here, variables are defined
at voxel level. In its dual graph, the vertex set consists of the corners of the primal grid cubes,
leading to shifted indicator variables. Per vertex the data term is mainly influenced from the
cost in its Voronoi area. Similarly, [15] evaluates the data cost at grid centers, approximately
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Figure 5: Left: Synthetic 2D scene, colors indicate
ground (gray), building (red) and roof (yellow). Mid-
dle: Control mesh. Right: Example reconstruction.

overall
acc. [%]

Tetra Octree MB

Scene 1 84.0 83.9 82.5
Scene 2 92.5 92.8 89

Table 1: Quantitative comparison
with octree model [3] and Multi-
Boost input data.

corresponding to integration within the respective Voronoi-area of grid cell. Furthermore,
taking finite differences in this regular case corresponds to verifying constraints for only one
of the two triangles (Fig. 4d). The supplementary material includes a more formal analysis.

Second, our formulation is adaptive, in the sense of [3]: Hierarchical refinement of the
tesselation can only decrease our energy. Hence, our scheme is applicable when refining the
model on-the-fly. We again must defer a formal proof to the supplementary material and give
an intuitive, visual explanation in Fig. 4c . Assume that (x∗,λ ∗,θ ∗) is an optimal solution
for a certain triplet M = {F,V,S}. Then a refined tesselation M̂ = {F̂ ,V̂ , Ŝ} can be found by
introducing additional vertices, i.e. V ⊂ V̂ (ideally on the label transition surfaces). To define
a new set of simplices, we demand that no faces are flipped, ∀ŝ ∈ Ŝ,∃s ∈ S with ŝ∩ s = ŝ.
Then one can find a new variable set and data cost ρ̂ with the same energy: We initialise
the new variables from the continuous solution at the respective location, and find new ρv̂
by integration. Subsequent minimisation in the refined mesh can only decrease the energy.
The argument works in both ways: Vertices that have the same solution as their adjacent
neighbors can be removed without changing the energy. For now we stick to this simple
scheme, future work might explore more sophisticated ideas, e.g. along the lines of [14].

5 Evaluation
Before we present results on challenging real 3D data we evaluate our method in 2D on a
synthetic dataset. All results are obtained with a multi-core implementation, on a 12-core, 3.5
GHz machine with 64GB RAM. For clarity, we only present the Lagrange discretisation. We
refer to the supplementary material for an evaluation of the Raviart-Thomas discretisation.

Input Data. We create a synthetic 2D scene composed of 4 labels: free space, build-
ing, ground and roof, surrounded by 17 virtual cameras. To replace depth maps and class-
likelihood images, we extract 2D points on the boundary “surface” and assign ground truth
label costs to each point. For the evaluation in 3D, we use three real-world aerial mapping
data sets. Our method requires two types of input data: depthmaps and pixel-wise class
probabilities (cf . Sec. 4). Moreover, we build a control mesh M around the initially pre-
dicted surface, to facilitate our FEM discretisation. Ideally, the control mesh enwraps the
true surface, using a finer meshing close to it. We densely evaluate the data cost at the ver-
tices of a regular data cost grid and let each control vertex accumulate the cost of its nearest
neighbours in that grid, to approximate an integration over its Voronoi cell.

2D Lagrange results. Fig. 5 illustrates the result we obtain in a perfect setting. The orig-
inal 2D image serves as ground truth for our quantitative evaluation. In this baseline setting,
our method achieves 99.8% of overall accuracy and 99.7% of average accuracy, confirming
the soundness of our Lagrange discretisation. In order to evaluate how our model behaves
in a more realistic setting, we conduct a series of experiments where we incrementally add
different types of perturbations. Our algorithm is tested against: (i) noise in the initial 2D
point cloud, respectively depth maps, (ii) wrong class probabilities and (iii) ambiguous class
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Figure 6: (a) Illustration of the control mesh foundation. Dots represent values of the data-
cost grid and crosses the control vertices. Voronoi cells of the control vertices are depicted
with dashed grey lines and the control mesh with a solid black line. Colors indicate ground
(purple), building (red), roof (yellow), free space (cyan) and no datacost (black). (b) Quan-
titative evaluation of Lagrange FEM method w.r.t. different degradations of the input data.

probabilities of random subsets, (iv) missing data, e.g. deleting part of a facade to simulate
unobserved areas, (v) sparsity of the initial point cloud. Fig. 6b illustrates the influence of
defective inputs. Under reasonable assumptions on the magnitude of the investigated pertur-
bations, we do not observe a significant loss in accuracy. The reconstruction quality starts to
decrease if more than half of the input data is misclassified or if the input point cloud is ex-
cessively sparse, meaning that >50% of the input is wrong or nonexistent. Average accuracy
is naturally more sensitive, due to the larger relative error in small classes.

Influence of the control mesh. Recall from (12) that the data cost of a control vertex
v∈V is approximately equal to an integral of ρ over its respective Voronoi area (cf . Fig. 6a,
left). Therefore, but also because of the sign change in (12), vertices close to the surface
receive small cost values and are mainly steered by the regulariser, i.e. these vertices realise
a smooth surface. On the other hand, vertices that integrate only over areas with positive or
negative sign determine the inside/outside decision, but are more or less agnostic about the
exact location of the surface. We conclude that a sufficient amount of control vertices should
lie within the band [d̂− 3ε; d̂ + 3ε] defined by the truncation of the cost function around
the observed depth d̂ (cf . (12) and [15]). Ideally control vertices are equally distributed
along each line-of-sight in front and behind the putative match (cf . Fig. 6a, middle column).
Undersampling within the near-band can lead to smooth, but inaccurate results (cf . Fig. 6a,
top right). Unobserved transitions, e.g. building-ground or roof-building, can also lead to
problems if the affected simplices are too large. To mitigate the effect, we add a few vertices
(e.g., a sparse regular grid) on top of the control mesh (cf . Fig. 6a, bottom row). Finally,
oversampling each line-of-sight in order to increase the resolution of the control mesh is not
recommended, the right spacing is determined by the noise level and ε and k, chosen in (12).

To conclude, it is an important advantage of the FEM framework that additional vertices
can be inserted as required, without changing the energy. In future work we will use this
flexibility to develop smarter control meshes, possibly as a function of the local noise level.

3D Lagrange results. To test our algorithm on real world data, we focus on a dataset
from the city of Enschede. Complementary results for other datasets are shown in the supple-
mentary material. As baseline we use [3], the current state-of-the-art in large-scale semantic
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3D reconstruction. Due to the lack of 3D ground truth, we follow their evaluation protocol
and back-project subsets of the 3D reconstruction to image space, where it is compared to a
manual segmentation. As can be seen in Fig. 7 and Tab. 1, the two results are similar in terms
of quantitative correctness. We note that measuring labeling accuracy in the 2D projection
does not consider the geometric quality of the reconstruction within regions of a single label.

Figs. 1 and 7 show city-modelling results obtained from (nadir and oblique) aerial im-
ages. Visually, our models are crisper and less “clay-like”. Compared to axis-aligned dis-
cretisation schemes, e.g. [3, 15], our method appears to better represent surfaces not aligned
with the coordinate axis, and exhibit reduced grid aliasing. Both effects are consistent with
the main strength of the FEM framework, to adapt the size and the orientation of the volume
elements to the data. Small tetrahedra, and vertices that coincide with accurate 3D points on
surface discontinuities, favour sharp surface details and crease edges (e.g., substructures on
roofs). Faces that follow the data points rather than arbitrary grid directions mitigate aliasing
on surfaces not aligned with the coordinate axes (e.g., building walls). The freedom of a
local control mesh unleashes the power of the regulariser in regions where the evidence is
weak or ambiguous (e.g., roads, weakly textured building parts).

As already mentioned, our FEM framework can be readily combined with on-the-fly
adaptive computation, as used in the baseline [3]. Compared to their voxel/octree model,
adaptive refinement is straight-forward, due to the flexibility of the FEM framework, which
allows for the introduction of arbitrary new vertices. As a preliminary proof-of-concept, we
have tested the naive refinement scheme described in Sec. 4. We execute three refinement
steps, where we repeatedly reconstruct the scene and subsequently refine simplices that con-
tain surface transitions, while lowering ε by half. Compared to computing everything at the
final resolution, this already yields substantial savings of 89–97% in memory and 82–93% in
computation time, without any loss in accuracy. Targetting ε ≥ 1√

3
(measured w.r.t. a bound-

ing box of 256 units), the runtimes for the tested scenes are 1h04m–1h47m and memory
consumption is 573–764 MB, on a single machine.

Figure 7: Quantitative evaluation of Scene 1 from Enschede. Left: One of the input images.
Middle left: Semantic 3D model. Middle right: Back-projected labels overlayed on the
image. Right: Error map, misclassified pixels are marked in red.

6 Conclusion

We have proposed a novel framework for the discretisation of multi-label problems, and
have shown that, in the context of semantic 3D reconstruction, the increased flexibility of
our scheme allows one to better adapt the discretisation to the data at hand. Our basic idea
is generic and not limited to semantic 3D reconstruction or the specific class of regularis-
ers. We would like to explore other applications where it may be useful to abandon grid
discretisations and move to a decomposition into simplices.
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