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Abstract
Recent work has shown good recognition results in 3D object recognition using 3D

convolutional networks. In this paper, we show that the object orientation plays an im-
portant role in 3D recognition. More specifically, we argue that objects induce different
features in the network under rotation. Thus, we approach the category-level classifi-
cation task as a multi-task problem, in which the network is trained to predict the pose
of the object in addition to the class label as a parallel task. We show that this yields
significant improvements in the classification results. We test our suggested architecture
on several datasets representing various 3D data sources: LiDAR data, CAD models, and
RGB-D images. We report state-of-the-art results on classification as well as significant
improvements in precision and speed over the baseline on 3D detection.

1 Introduction
Various devices producing 3D point clouds have become widely applicable in recent years,
e.g., range sensors in cars and robots or depth cameras like the Kinect. Structure from motion
and SLAM approaches have become quite mature and generate reasonable point clouds, too.
With the rising popularity of deep learning, features for recognition are no longer designed
manually but learned by the network. Thus, moving from 2D to 3D recognition requires only
small conceptual changes in the network architecture [19, 35].

In this work, we elaborate on 3D recognition using 3D convolutional networks, where
we focus on the aspect of auxiliary task learning. Usually, a deep network is directly trained
on the task of interest, i.e., if we care about the class labels, the network is trained to produce
correct class labels. There is nothing wrong with this approach. However, it requires the
network to learn the underlying concepts, such as object pose, that generalize to variations
in the data. Oftentimes, the network does not learn the full underlying concept but some
representation that only partially generalizes to new data.

In the present paper, we focus on the concept of object orientation. The actual task only
cares about the object label, not its orientation. However, to produce the correct class label,
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Figure 1: Adding orientation classification as an auxiliary task to a 3D classification network
improves its category-level classification accuracy.

at least some part of the network representation must be invariant to the orientation of the
object, which is not trivial in 3D. Effectively, to be successful on the classification task,
the network must also solve the orientation estimation task, but the loss function does not
give any direct indication that solving this auxiliary task is important. We show that forcing
the network to produce the correct orientation during training increases its classification
accuracy significantly – Figure 1.

We introduce a network architecture that implements this idea and evaluate it on 4 differ-
ent datasets representing the large variety of acquisition methods for point clouds: laser range
scanners, RGB-D images, and CAD models. The input to the network is an object candidate
obtained from any of these data sources, which is fed to the network as an occupancy grid.
We compare the baseline without orientation information to our orientation-boosted version
and obtain improved results in all experiments. We also compare to the existing 3D clas-
sification methods and achieve state-of-the-art results using our shalow orientation-boosted
networks in most of the experiments. In the scope of our experiments, we extended the Mod-
elnet40 dataset, which consists of more than 12k objects, with per-class alignments by using
some automated alignment procedure [25]. We will provide the additional annotation.

We also applied the classifier in a 3D detection scenario using a simple 3D sliding box
approach. In this context, the orientation estimation is no longer just an auxiliary task but
also determines the orientation of the box, which largely reduces the runtime of the 3D
detector.

2 Related Work

Most previous works on 3D object recognition rely on handcrafted feature descriptors, such
as Point Feature Histograms [23, 24], 3D Shape Context [17], or Spin Images [16]. Descrip-
tors based on surface normals have been very popular, too [13, 20]. Yulanguo et al. [37]
gives an extensive survey on such descriptors.

Feature learning for 3D recognition has first appeared in the context of RGB-D images,
where depth is treated as an additional input channel [1, 5, 7]. Thus, the approaches are
conceptually very similar to feature learning in images. Gupta et al. [11] fits and projects 3D
synthetic models into the image plane.
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3D convolutional neural networks (CNNs) have appeared in the context of videos. Tran
et al. [32] use video frame stacks as a 3D signal to approach multiple video classification
tasks using their 3D CNN, called C3D. 3D CNNs are not limited to videos, but can be applied
also to other three-dimensional inputs, such as point clouds, as in our work.

The most closely related works are by Wu et al. [35] and Maturana & Sherer [19], namely
3D ShapeNets and VoxNet. Wu et al. use a Deep Belief Network to represent geometric 3D
shapes as a probability distribution of binary variables on a 3D voxel grid. They use their
method for shape completion from depth maps, too. The ModelNet dataset was introduced
along with their work. The VoxNet [19] is composed of a simple but effective CNN, accept-
ing as input voxel grids similar to Wu et al. [35]. In both of these works the training data is
augmented by rotating the object to make the network learn a feature representation that is
invariant to rotation. However, in contrast to the networks proposed in this paper, the network
is not enforced to output the object orientation, but only its class label. While in principle,
the loss on the class label alone should be sufficient motivation for the network to learn an
invariant representation, our experiments show that an explicit loss on the orientation helps
the network to learn such representation.

Su et al. [31] take advantage of the object pose explicitly by rendering the 3D objects
from multiple viewpoints and using the projected images in a combined architecture of 2D
CNNs to extract features. However, this method still relies on the appearance of the objects
in images, which only works well for dense surfaces that can be rendered. For sparse and
potentially incomplete point clouds, the approach is not applicable. Song et al. [29] focus
on 3D object detection in RGB-D scenes. They utilize a 3D CNN for 3D object bounding
box suggestion. For the recognition part, they combine geometric features in 3D and color
features in 2D.

Several 3D datasets have become available recently. Sydney Urban Objects [6] includes
point-clouds obtained from range-scanners. SUN-RGBD [30] and SUN-3D [36] gather some
reconstructed point-clouds and RGB-D datasets in one place and in some cases they also add
extra annotations to the original datasets. We use the annotations provided for NYU-Depth
V2 dataset [27] by SUN-RGBD in this work. ModelNet is a dataset consisting of synthetic
3D object models [35]. Sedaghat & Brox [25] created a dataset of annotated 3D point-clouds
of cars from monocular videos using structure from motion and some assumptions about the
scene structure.

Quite recently and parallel to this work, there have been several works utilizing 2D or
3D CNNs merely on 3D CAD models of ModelNet [35] in supervised [2, 8, 12], semi-
supervised [21] and unsupervised [34] fashions. Although our main architecture is rather
shallow compared to most of them, and we use a rather low resolution compared to meth-
ods relying on high-resolution input images, we still provide state-of-the-art results on the
aligned ModelNet10 subset, and on-par results on a roughly and automatically aligned ver-
sion of the ModelNet40 subset.

Most of the published works on detection try to detect objects directly in the 2D space of
the image. Wang & Posner [33] were among the first ones to utilize point clouds to obtain
object proposals. In another line of work Gonzalez et al. [10] and Chen et al. [4] mix both
2D and 3D data for detection. Many authors, including Li et al. [18] and Huang et al. [14]
approach the task with a multi-tasking method.
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Figure 2: Basic Orientation Boosting. Class labels and orientation labels are two separate
outputs. The number of orientation labels assigned to each class can be different to the
others. Both outputs contribute to the training equally – with the same weight.

3 Method

The core network architecture is based on VoxNet [19] and is illustrated in Fig. 2. It takes a
3D voxel grid as input and contains two convolutional layers with 3D filters followed by two
fully connected layers. Although this choice may not be optimal, we keep it to be able to
directly compare our modifications to VoxNet. In addition, we experimented with a slightly
deeper network that has four convolutional layers.

Point clouds and CAD models are converted to voxel grids (occupancy grids). For the
NYUv2 dataset we used the provided tools for the conversion; for the other datasets we im-
plemented our own version. We tried both binary-valued and continuous-valued occupancy
grids. In the end, the difference in the results was negligible and thus we only report the
results of the former one.

Multi-task learning We modify the baseline architecture by adding orientation estimation
as an auxiliary parallel task. We call the resulting architecture the ORIentation-boosted
vOxel Net – ORION. Without loss of generality, we only consider rotation around the z-axis
(azimuth) as the most varying component of orientation in practical applications. Through-
out this paper we use the term ’orientation’ to refer to this component.

Orientation is a continuous variable and the network could be trained to provide such
an output. However, the idea is to treat different orientations of an object differently, and
therefore we cast the orientation estimation as a classification problem. This also serves as
a relaxation on dataset constraints, as a rough alignment of data obviates the need for strict
orientation annotations. The network has output nodes for the product label space of classes
and orientations and learns the mapping

xi 7→ (ci,oi) (1)

where xi are the input instances and ci , oi are their object class and orientation class, respec-
tively.

We do not put the same orientations from different object classes into the same orienta-
tion class, because we do not seek to extract any information from the absolute pose of the
objects. Sharing the orientation output for all classes would make the network learn features
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shared among classes to determine the orientation, which is the opposite of what we want:
leveraging the orientation estimation as an auxiliary task to improve on object classifica-
tion. For example, a table from the 45◦ orientations class is not expected to share any useful
information with a car of the same orientation.

We choose multinomial cross-entropy losses [22] for both tasks, so we can combine them
by summing them up:

L= (1− γ)LC + γLO (2)

where LC and LO indicate losses for object classification and orientation estimation tasks re-
spectively. We used equal loss weights (γ = 0.5) and found in our classification experiments
that the results do not depend on the exact choice of the weight γ around this value. However,
in one of the detection experiments, where the orientation estimation is not an auxiliary task
anymore, we used a higher weight for the orientation output to improve its accuracy.

Due to various object symmetries, the number of orientation labels differs per object class
– Figure 2. The idea is that we do not want the network to try to differentiate between, e.g., a
table and its 180◦ rotated counterpart. For the same reason, to rotationally symmetric objects,
such as poles, or rotationally neutral ones, such as trees to which no meaningful azimuth
label can be assigned, we dedicate only a single node. This is decided upon manually in the
smaller datasets. However, during the auto-alignment of the bigger Modelnet40 dataset, the
number of orientations are also automatically assigned to different classes. Details are given
in the supplementary material.

Voting Object orientations can be leveraged at the entry of the network, too. During the test
phase we feed multiple rotations of the test object to the network and obtain a final consensus
on the class label based on the votes we obtain from each inference pass, as follows:

c f inal = argmax
k

∑
r

Sk(xr) (3)

where Sk is the score the network assigns to the object at its kth node of the main (object
category) output layer. xr is the test input with the rotation index r.

4 Datasets

We train and test our networks on four datasets, three of which are illustrated in Figure 3.
We have chosen the datasets such that they represent different data sources.

Sydney Urban Objects - LiDAR/Pointcloud This dataset consists of LiDAR scans of 631
objects in 26 categories. The objects’ point-clouds in this dataset are always incomplete,
as they are only seen by the LiDAR sensor from a single viewpoint. Therefore the quality
of the objects are by no means comparable to synthetic 3D objects, making classification a
challenging task, even for human eyes; see Figure 3. This dataset is also of special interest
in our category-level classification, as it provides a tough categorization of vehicles: 4wd,
bus, car, truck, ute and van are all distinct categories. We use the same settings as [19] to
make our results comparable to theirs. The point clouds are converted to voxel-grids of size
32x32x32, in which the object occupies a 28x28x28 space. Zero-paddings of size 2 is used
on each side to enable displacement augmentation during training. We also annotated the
orientations to make the data suitable for our method. These we will provide to the public.
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Figure 3: Examples from the various 3D datasets we used in experiments. On top, two
exemplar scenes from the NYUv2 [27] & Sydney [6] datasets are depicted. On the bottom
samples from the Modelnet dataset are displayed. The KITTI dataset is similar to the Sydney
dataset and is not shown here.

NYUv2 - Kinect/RGBD This dataset consists of an overall number of 2808 RGBD images,
corresponding to 10 object classes. The class types are shared with the ModelNet10 dataset.
We used voxel grids of size 32x32x32, which contain the main object in the size of 28x28x28.
The rest includes the context of the object and each object has a maximum number of 12
rotations. The dataset does not provide orientation annotations and therefore we used the
annotations provided by the SUN-RGBD benchmark [30].

ModelNet - Synthetic/CAD This dataset is composed of synthetic CAD models. The Mod-
elNet10 subset consists of uniformly aligned objects of the same classes as in the NYUv2
dataset. The object meshes in this dataset are converted to voxel grids of size 28x28x28,
similar to the NYUv2 setting. The ModelNet40 subset does not come with alignments (or
orientation annotations). Thus, we provided manual annotation of orientation that we will
make publicly available. In addition, we ran an unsupervised automated procedure to align
the samples of ModelNet40. Please refer to supplemental material for details.

KITTI - LiDAR/Pointcloud The KITTI dataset [9] contains 7481 training images and 7518
test images in its object detection task. Each image represents a scene which also comes with
a corresponding Velodyne point cloud. 2D and 3D bounding box annotations are provided in
the images. Using the provided camera calibration parameters they can be converted into the
coordinates of the Velodyne scanner. We use this dataset only in the detection experiment.
To be able to report and analyze the effects of our method at multiple levels, we split the
publicly available training set to 80% and 20% subsets for training and testing, respectively.
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Method↓ Dataset

# Conv # param Sydney NYUv2 ModelNet10

Hand-crafted feat.

Recursive D [28] - - - 37.6 -
Recursive D+C [28] - - - 44.8 -
Triangle+SVM [6] - - 67.1 - -
GFH+SVM [3] - - 71.0 - -

Deep Network
FusionNet [12] 118M - - 93.1
VRN† [2] 43 18M - - 93.6

Shallow Network

ShapeNet [35] 3 - - 57.9 83.5
DeepPano [26] 4 - - - 85.5
VoxNet [19] (baseline) 2 890K 72 71 92

ORION (Ours)
2 910K 77.8 75.4 93.8
4 4M 77.5 75.5 93.9

Table 1: Classification results and comparison to the state-of-the-art on three datasets. We
report the overall classification accuracy, except for the Sydney dataset where we report
the weighted average over F1 score. The auxiliary task on orientation estimation clearly
improves the classification accuracy on all datasets.† We report the single-network results
for this method.

5 Experiments and Results

5.1 Classification

The classification results on all datasets are shown in Table 1. For the Sydney Urban Objects
dataset, we report the average F1 score weighted by class support as in [35] to be able to
compare to their work. This weighted average takes into account that the classes in this
dataset are unbalanced. For the other datasets we report the average accuracy. The Sydney
dataset provides 4 folds/subsets to be used for cross-validation; in each experiment three
folds are for training and one for testing. Also due to the small size of this dataset, we run
each experiment three times with different random seeds, and report the average over all the
12 results.

We achieve clear improvements over the baseline and report state-of-the-art results in all
the three datasets, with a far shallower architecture compared to previous state-of-the-art (2
vs. 43 conv. layers) and a big saving on number of parameters (1M vs.18M).

We also experimented with a slightly deeper network (last row of Table 1), but found that
the network starts to overfit on the smaller datasets. Details of this extended architecture can
be found in the supplementary material.

5.1.1 Non-aligned Dataset

Since the Modelnet40 dataset does not come with alignments we manually annotated the
orientation. As an alternative, we also aligned the objects, class by class, in an unsupervised
fashion using the method introduced in Sedaghat & Brox [25]. Details of the steps of this
process can be found in the supplementary material. Table 2 shows the large improvement
obtained by using the extra annotation during training. Interestingly, the automatic alignment
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Ground Truth 4wd building bus desk monitor
Baseline car bus car sofa chair

Ours 4wd building bus desk monitor

Ground Truth table chair ute toilet bathtub
Baseline nite-stnd table ute toilet table

Ours table chair truck chair bed

Figure 4: Some exemplar classification results. We show examples on which the outputs of
the two networks differ.

Accuracy (%)

Conv. Batch No Rough, Automatic Perfect, Manual
Method Layers Norm. Alignment Alignment Alignment

VoxNet [19] (baseline) 2 × 83 - -

ORION (Ours)
2 × - 88.1 87.5
2 X - 88.6 88.2
4 X - 89.4 89.7

Table 2: Classification accuracy on Modelnet40. Orientation information during training
clearly helps boost the classification accuracy even when orientation labels are obtained by
unsupervised alignment [25]. In fact, manually assigned labels do not yield any significant
improvement. Batch normalization and two additional convolutional layers improve results.

is almost as good as the tedious manual orientation labeling. This shows that the network
can benefit even from coarse annotations.

Since the number of training samples is large, the deeper network with four convolutional
layers performed even better than its counterpart with only two convolutional layers.

Batch normalization (BN) is known to help with problems during network training [15].
Adding batch normalization to the convolutional layers yielded consistent improvements in
the results; e.g. see Table 2. We conjecture that batch normalization causes the error from
the second task to propagate deeper back into the network.

5.2 Detection
We tested the performance of our suggested method in a detection scenario, where the orien-
tation sensitive network is used as a binary object classifier to assign a score to 3D bounding
box proposals in a sliding window fashion. We tested the 3D detector to detect cars in the
KITTI dataset.

Figure 5 quantifies the improvements of the ORION architecture in such an exemplar
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Figure 5: On the top left, detected boxes of an exemplar scene are displayed in its 3D point-
cloud representation. 3D boxes are then projected to the 2D image plane – top right. Green
boxes are the ground truth cars. Blue and red show true and false positives respectively. The
bottom row illustrates the Precision-Recall curves for multiple detection experiments.

detection scenario. The mere use of our architecture as a binary classifier significantly pulls
up the PR curve and increases the mean average precision. In this case, we only relied on
the object classification output of the network and performed an exhaustive search over the
rotations – 18 rotation steps to cover 360 degrees. The main benefit is achieved when we
also leveraged the orientation output of the network to directly predict the orientation of the
object. This resulted in an 18× run time improvement. We also noticed that by increasing
the loss weight of the orientation output, thus emphasizing on the orientation, the detection
results improved further.

It is worth noting that in contrast to most of the detectors which run detection in the
RGB image of the KITTI dataset, we do not use the RGB image but only use the 3D point
cloud. We also limited the search in the scale and aspect-ratio spaces by obtaining statistical
measures of the car sizes in the training set.

6 Analysis
To analyze the behavior of the orientation-boosted network, we compare it to its correspond-
ing baseline network. To find a correspondence, we first train the baseline network long
enough, so that it reaches a stable state. Then we use the trained net to initialize the weights
of ORION, and continue training with low learning rate. We found that some filters tend to
become more sensitive to orientation-specific features of the objects. We also found that in
the baseline network some filters behave as the dominant ones for all the possible rotations of
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the objects in a class, while ORION has managed to spread the contributions over different
filters for different orientations. Details of these experiments and visualizations are given in
the supplementary material.

7 Conclusions
We showed for the task of 3D object classification that learning of certain concepts, such
as invariance to object orientation, can be supported by adding the concept as an auxiliary
task during training. By forcing the network to produce also the object orientation during
training, it achieved better classification results at test time. This finding was consistent
on all datasets and enabled us to establish state-of-the-art results on most of them. The
approach is also applicable to 3D detection in a simple sliding 3D box fashion. In this case,
the orientation output of the network avoids the exhaustive search over the object rotation.
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