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1 Experimental Results and Discussions
We performed two types of experiments as in [6]: cross-view (CV) and cross-subject (CS).
Table 1 summarizes the obtained results for our experiment compared to the state of the art.

Method CS CV
1 HOG2 32.24% 22.27%
2 Super Normal Vector 31.82% 13.61%
3 HON4D 30.56% 7.26%
4 Lie Group 50.08% 52.76%
5 Skeletal Quads 38.62% 41.36%
6 FTP Dynamic Skeletons 60.23% 65.22%
7 HBRNN-L 59.07% 63.97%
8 1 Layer RNN 56.02% 60.24%
9 2 Layer RNN 56.29% 64.09%

10 1 Layer LSTM 59.14% 66.81%
11 2 Layer LSTM 60.69% 67.29%
12 1 Layer P-LSTM 62.05% 69.40%
13 2 Layer P-LSTM 62.93% 70.27%
14 ST-LSTM (Joint Chain) 61.7 % 75.5%
15 ST-LSTM (Tree Traversal) 65.2% 76.1%
16 ST-LSTM (TT +TG) 69.2% 77.7%
17 CL1D 62.99% 70.11%
18 MCL (upper body) 70.03% 78.01%
19 MCL (body parts) 73.76% 78.4%

Table 1: Cross subjects and Cross views accuracies in NTU RGB+D dataset

Table 1 shows the results of nineteen methods/models that were tested in both the CS
and CV scenarios. Some of them used hand-crafted features, and others used deep learning
methods to automatically extract features. The results of the first 13 methods were obtained
from [6]. The methods from 1 to 6 in the table used hand-crafted features based on the depth
and/or 3D skeleton data. HOG2 [4], Super Normal Vector [8], and HON4D [5] achieved their
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highest score (32.24%, 32.82%, and 30.56 % respectively) in the CS scenario because these
representations are not view-point invariant. On the other hand, Lie Groups [7], Skeleton
Quads [1], and FTP Dynamic Skeletons [2] achieved better scores (52.76 %, 41.56%, and
65.22 % ) in the CV scenario because these representations are view-point invariant and
hence perform better in the CV scenario because in this scenario the same subject may appear
in training and testing, which make the problem easier. Deep learning techniques are used
from method 7 to the end of the table. The best scores that were achieved in both CV and
CS scenarios, which are 62.99 % and 70.27 %, respectively, are obtained by using 2-Layer
P-LSTM [6]. Methods 14, 15 and 16 are the work of [3], which is considered the current
state of the art with scores outperforming prior methods.

The last three rows in the table contain our results. When CL1D is used to classify actions
based on the body motion alone, the recognition rate for both CS and CV experiments are
(62.99% and 70.11%), respectively. However, when MCL is used to capture both the body
motion and part shape, the results go up to 73.76 % and 78.4%, for the CS and CV scenarios,
respectively, which are superior to the current state of the art.

The table contains an extra row for the results of MCL trained on the upper body part
as whole after being cropped and reduced to the size of 128×128. This model was trained
for the same number of epochs as the MCL (body parts) model. However, 20 frames are
sampled per sequence in this model because training with less samples caused under-fitting.
Despite the extra information provided to this model, it took much longer training time to
exceed the state of the art results, and yet fell clearly behind the MCL model with body
parts, especially in the CS scenario. This verifies our initial hypothesis that combining and
integrating modalities, as well as leveraging the powers of CNN and LSTM are effective
mechanisms in action recognition.
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