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Abstract

Pooling is a ubiquitous operation in image processing algorithms that allows for
higher-level processes to collect relevant low-level features from a region of interest.
Currently, max-pooling is one of the most commonly used operators in the computational
literature. However, it can lack robustness to outliers due to the fact that it relies merely
on the peak of a function. Pooling mechanisms are also present in the primate visual cor-
tex where neurons of higher cortical areas pool signals from lower ones. The receptive
fields of these neurons have been shown to vary according to the contrast by aggregating
signals over a larger region in the presence of low contrast stimuli. We hypothesise that
this contrast-variant-pooling mechanism can address some of the shortcomings of max-
pooling. We modelled this contrast variation through a histogram clipping in which the
percentage of pooled signal is inversely proportional to the local contrast of an image.
We tested our hypothesis by applying it to the phenomenon of colour constancy where a
number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge
and Double-Opponency). For each of these methods, we investigated the consequences
of replacing their original max-pooling by the proposed contrast-variant-pooling. Our
experiments on three colour constancy benchmark datasets suggest that previous results
can significantly improve by adopting a contrast-variant-pooling mechanism.

1 Introduction
Many computer vision frameworks contain a pooling stage that combines local responses
at different spatial locations [7]. This operation is often a sum- or max-pooling mechanism
implemented by a wide range of algorithms, e.g. in feature descriptors (such as SIFT [36] and
HOG [11]) or convolutional neural networks [35, 42]. Choosing the correct pooling operator
can make a great difference in the performance of a method [7]. Current standard pooling
mechanisms lack the desired generalisation to find equilibrium between frequently-occurring
and rare but informative descriptors [38]. Therefore, many computer vision applications can
benefit from a more dynamic pooling solution that takes into account the content of pooled
signals.
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Such pooling operators are commonly used in modelling the phenomenon of colour
constancy (i.e. a visual effect that makes the perceived colour of surfaces remain approx-
imately constant under changes in illumination [18, 27]) both in biological [9] and compu-
tational [33] solutions. Despite decades of research, colour constancy still remains as an
open question [18], and solutions to this phenomenon are important from a practical point
of view, e.g. camera manufacturers need to produce images of objects that appear the same
as the actual objects in order to satisfy customers. Motivated by above, in this article we
propose a contrast-variant-pooling mechanism and investigate its feasibility in the context of
computational colour constancy.

1.1 Computational Models of Colour Constancy
Mathematically, the recovery of spectral reflectance from a scene illuminated by light of
unknown spectral irradiance is an ill-posed problem (it has infinite possible solutions). The
simplest and most popular solution has been to impose some arbitrary assumptions regarding
the scene illuminant or its chromatic content. Broadly speaking colour constancy algorithms
can be divided into two categories: (i) low-level driven, which reduce the problem to solv-
ing a set of non-linear mathematical equations [22, 33, 45], and (ii) learning-based, which
train machine learning techniques on relevant image features [1, 17, 20]. Learning-based
approaches may offer the highest performance results, however, they have major setbacks
which make them unsuitable in certain conditions: (a) they rely heavily on training data that
is not easy to obtain for all possible situations, and (b) they are likely to be slow [23] and un-
suitable for deployment inside limited hardware. A large portion of low-level driven models
can be summarised using a general Minkowski expression [14, 45] such as:

Lc(p) =
(∫

Ω

[ fc(x)]
p dx
) 1

p

= kec, (1)

where L represents the illuminant at colour channel c ∈ {R,G,B}; f (x) is the image’s pixel
value at the spatial coordinate x ∈ Ω; p is the Minkowski norm; and k is a multiplicative
constant chosen such that the illuminant colour, e, is a unit vector.

Distinct values of the Minkowski norm p results into different pooling mechanisms. Set-
ting p = 1 in Eq. 1 reproduces the well known Grey-World algorithm (i.e. sum-pooling), in
which it is assumed that all colours in the scene average to grey [8]. Setting p = ∞ replicates
the White-Patch algorithm (i.e. max-pooling), which assumes the brightest patch in the im-
age corresponds to the scene illuminant [33]. In general, it is challenging to automatically
tune p for every image and dataset. At the same time inaccurate p values may corrupt the
results noticeably [23].

The Minkowski framework can be generalised further by replacing f (x) in Eq. 1 with its
higher-order derivatives [45]. These non-linear solutions are analogous to centre-surround
mechanisms of visual cortex [34], which is typically modelled by a Difference-of-Gaussians
(DoG) operators where a narrower, positive Gaussian plays the role of the “centre” and
a broader, negative Gaussian plays the role of the “surround” [13, 37]. Recently, a few
biologically-inspired models of colour constancy grounded on DoG have offered promising
results [22, 40], however their efficiency largely depends on finding an optimum pooling
strategy for higher cortical areas. In short, pooling is a crucial component of many colour
constancy models driven by low-level features (or even in deep-learning solutions [6, 19]).
In the primate visual systems the size of the receptive field varies according to the local
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contrast of the light falling on it [3, 44] presenting a dynamic solution dependent on the
region of interest.

The low-level models mentioned above are related to the early stages of visual process-
ing, i.e. the primary visual cortex (area V1), that are likely to be involved in colour constancy.
Physiological measures suggest that although receptive fields triple in size from area V1 to
area V2 [47], their basic circuity with respect to surround modulation is similar, i.e. keeping
the same size dependency with contrast properties found in V1 [44]. This is consistent with
the large body of physiological and psychophysical literature highlighting the significance
of contrast in the visual cortex. In computer vision, contrast-dependent models have also
shown encouraging results in various applications such as visual attention [28], tone map-
ping [41], and boundary detection [2], to name a few. From these we can hypothesise the
convenience and explanatory value of various “pooling strategies” such as those proposed by
previous colour constancy methods. In the rest of this work we will explore the advantages
of replacing the different feed-forward (pooling) configurations of some successful colour
constancy models [22, 33, 45] by that of the visual system (as described by current neuro-
physiological literature [3, 44]). Our aim in doing so is dual, on the one hand we want to
explore the technological possibilities of creating a more efficient algorithm and on the other
hand we would like to test the idea that contrast-variant-pooling might play an important role
in colour constancy.

1.2 Summary of the Contributions

1

01

0

1

Figure 1: Flowchart of the proposed contrast-variant-pooling (CVP) mechanism in the con-
text of colour constancy. We implemented CVP through a top-x-percentage-pooling. Given
an input image or a feature map: (i) value of the x is computed according to the inverse
of local contrast for each channel, and (ii) we estimate the scene illuminant as the average
value of the top-x-percentage of pooled pixels (those on the right side of the depicted dashed
lines).

In the present article we propose a generic contrast-variant-pooling (CVP) mechanism
that can replace standard sum- and max-pooling operators in a wide range of computer vi-
sion applications. Figure 1 illustrates the flowchart of CVP, which is based on local con-
trast and therefore it offers a dynamic solution that adapts the pooling mechanism accord-
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4 ARASH AKBARINIA: CONTRAST VARIANT POOLING MECHANISM

ing to the content of region of interest. We tested the feasibility of CVP in the context
of colour constancy by substituting the pooling operation of four algorithms: (a) White-
Patch [33], (b) first-order Grey-Edge [45], (c) second-order Grey-Edge [45], and (d) Double-
Opponency [22] in three benchmark datasets. Results of our experiments show the quantita-
tive and qualitative benefits of CVP over max-pooling.

2 Model

2.1 Max-pooling Colour Constancy
One of the earliest computational models of colour constancy (White-Patch) is grounded on
the assumption that the brightest pixel in an image corresponds to a bright spot or specular
reflection containing all necessary information about the scene illuminant [33]. Mathemati-
cally this is equivalent to a max-pooling operation over the intensity of all pixels:

Lc = argmax
x,y

Ic(x,y), (2)

where L represents the estimated illuminant at each chromatic channel c ∈ {R,G,B}; I is the
original image and (x,y) are the spatial coordinates in the image domain.

One important flaw of this simple approach is that a single bright pixel can misrepresent
the whole illuminant. Furthermore, the White-Patch algorithm may fail in the presence of
noise or clipped pixels in the image due to the limitations of the max-pooling operator [21].
One approach to address these issues is to account for a larger set of “white” points by pool-
ing a small percentage of the brightest pixels (e.g. the top 1%) [12], an operation referred as
top-x-percentage-pooling. In this manner, the pooling mechanism is collectively computed
considering a group of pixels rather than a single one. This small variant might be a crucial
factor in the estimation of the scene illuminant [31]. A similar mechanism has also been
deployed successfully in other applications such as shadow removal [16].

In practice, given the chosen x-percentage, the top-x-percentage-pooling can be imple-
mented through a histogram-based clipping mechanism [12, 16]. Let H be the histogram of
the input image I, and let Hc(i) represents number of pixels in colour channel c with intensity
i ∈ [0, · · · ,Kc] (histogram’s domain). The scene illuminant Lc is computed as:

Lc =
1

Nkc

Kc

∑
i=kc

i ·Hc(i), (3)

where Nkc is the total number of pixels within the intensity range kc to Kc. The values of
kc={R,G,B} are determined from the chosen x-percentage such that:

Nkc =
Kc

∑
i=kc

Hc(i) = xc ·P, (4)

where P is the total number of pixels in the image and xc is the chosen percentage for colour
channel c. Within this formulation it is very cumbersome to define a universal, optimally-
fixed percentage of pixels to be pooled [12] and consequently the free variable x requires
specific tuning for each image or dataset individually. Naturally, this limitation restricts the
usability of the top-x-percentage-pooling operator. In the following sections we show how
to automatically compute this percentage, based on the local contrast of each image.
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2.2 Pooling Mechanisms in the Visual Cortex
We know from the physiology of the cerebral cortex that neurons in higher cortical areas
pool information from lower areas over increasingly larger image regions. Although the
exact pooling mechanism is yet to be discovered, “winner-takes-all” and “sparse coding”
kurtotical behaviour are common to many groups of neurons all over the visual cortex [9, 39],
and it is conceivable that a mechanism analogous to max-pooling might be present within
the cortical layers. Indeed such behaviour has been discovered across a population of cells
in the cat visual cortex [32] and the activation level of cells with max-like behaviour was
reported to vary depending on the contrast of visual stimuli.

Results reported by [32] suggest an inverse relationship between the contrast of a stim-
ulus and the percentage of the signal pooled. When pooling neurons were exposed to low
contrast stimuli, their responses shifted slightly away from pure max-pooling (selecting the
highest activation response within a region) towards integrating over a larger number of
highly activated neurons. In the language of computer vision, this can be regarded as top-
x-percentage-pooling, where x assumes a smaller value in high contrast and a larger value
in low contrast. Interestingly, the pooling of those neurons remained always much closer
to max-pooling than to the linear integration of all neurons (sum-pooling) [32]. Mathemati-
cally, this can be interpreted as having a very small (top-x-percentage-pooling) x value.

It does not come as a great surprise that the pooling mechanism in the visual cortex
depends on the stimulus’ contrast. There is a large body of physiological studies showing
that receptive fields (RF) of neurons are contrast variant (for a comprehensive review refer
to [3]). Quantitative results suggest that RFs in visual area one (V1) of awake macaques
double their size when measured at low contrast [44]. Similar expansions have also been
reported for the RFs of neurons in extrastriate areas, such as V2 and V4. This implies that a
typical neuron in higher cortical areas that normally pool responses from its preceding areas
over about three neighbouring spatial locations [47] can access a substantially larger region
to pool from in the presence of low contrast stimuli. This is in line with the reported pooling
mechanism in the cat visual cortex [32].

2.3 Contrast Variant Pooling
In order to model this contrast-variant-pooling mechanism, we first computed local contrast
C of the input image I at every pixel location by means of its local standard deviation defined
as:

Cc(x,y;σ) =

√
1

#Nσ (x,y)
∑

(x′,y′)∈Nσ (x,y)

(
Ic(x′,y′)−µ(x,y)

)2 (5)

where c indexes each colour channel; (x,y) are the spatial coordinates of a pixel; µ is an
isotropic average kernel with size σ ; and Nσ (x,y) represents the neighbourhood centred on
pixel (x,y) of radius σ .

To simulate this inverse relation between stimulus contrast and percentage of signal
pooled [32] in the top-x-percentage-pooling operator, we determined the percentage xc in
Eq. 4 as the average of inverse local contrast signals:

xc =
1
P ∑

x,y

1
Cc(x,y;σ)

, ∀(x,y) ∈Ω, (6)

where Cc is computed from Eq. 5, and Ω is the spatial image domain. In this fashion, instead
of defining a fix percentage of signal (pixels) to be pooled (as in [16]), we chose an adaptive
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6 ARASH AKBARINIA: CONTRAST VARIANT POOLING MECHANISM

percentage according to the contrast of image. In terms of colour constancy, this effectively
relates the number of pooled pixels to compute the scene illuminant to the average contrast
of an image. We illustrated this mechanism of contrast-variant-pooling in the central panel
of Figure 1, where red, green and blue signals correspond to the histogram of each chromatic
channel. Pixels on the right side of the dashed lines (kc) are pooled. In this example, contrast
is higher for the red signal and therefore a smaller percentage of cells are pooled in the red
channel.

Bearing in mind that “contrast” is just a fraction in the range [0,1] – with 0 characterising
an absolutely uniform area and 1 representing points with the highest contrast, e.g. edges –
we can predict that the percentage x will be a very small number for natural images where
homogeneous regions are likely to form the majority of the scene. Consequently in our top-
x-percentage-pooling operator we always pool a small percentage. This is in agreement with
observations of [32] which indicate that such pooling mechanism is always much closer to
max-pooling than to sum-pooling.

2.4 Generalisation to Other Colour Constancy Models

There is a number of colour constancy models in the literature which are driven by low-level
features that require a pooling mechanism on top of their computed feature maps in order to
estimate the scene illuminant. In the Double-Opponency [22] algorithm this feature map is
computed by convolving a colour-opponent representation of the image with a DoG kernel
followed by a max-pooling operation. In the Grey-Edge [45] model, higher-order derivatives
of the image are calculated through its convolution with the first- and second-order derivative
of a Gaussian kernel. This is complemented by a Minkowski summation, which oscillates
between sum- and max-pooling depending on its norm.

Similar to the White-Patch algorithm, the pooling mechanism of these models can also
be replaced with our top-x-percentage-pooling operator, where x is computed according to
the local contrast of image as explained above. The only difference is that instead of pooling
from an intensity image (as in case of the White-Patch algorithm), Double-Opponency and
Grey-Edge pool over their respective feature maps. This means that Eq. 3 receives a feature
map M instead of an intensity image I as input.

3 Experiments and Results
In order to investigate the efficiency of our model, we applied the proposed contrast-variant-
pooling (CVP) mechanism to four different colour constancy algorithms whose source code
were publicly available: White-Patch [33], first-order Grey-Edge [45], second-order Grey-
Edge [45], and Double-Opponency [22]. We simply replaced their max-pooling operator
with our proposed pooling mechanism. To evaluate each method we used the recovery an-
gular error defined as:

ε
◦ (ee,et) = arccos

(
< ee,et >

‖ee‖‖et‖

)
, (7)

where < .> represents the dot product of the estimated illuminant ee and the ground truth et ;
and ‖.‖ stands for the Euclidean norm of a vector. It is worth mentioning that this error mea-
sure might not correspond precisely to observers’ preferences [46], however, it is the most
commonly used comparative measure in the literature. We also computed the reproduction
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angular error [15] in all experiments (due to lack of space these results are not reported here).
Readers are encouraged to check the accompanying supplementary materials.

We conducted experiments on three benchmark datasets1, (i) SFU Lab (321 images) [5],
(ii) Colour Checker (568 images) [43], and (iii) Grey Ball (11,346 images) [10]. In Table 1
we have reported the best median and trimean angular errors for each of the considered
methods (these metrics were proposed by [26] and [24] respectively to evaluate colour con-
stancy algorithms since they are robust to outliers). Mean angular errors are reported in the
supplementary materials.

SFU Lab [5] Colour Checker [43] Grey Ball [10]
Method Median Trimean Median Trimean Median Trimean
White-Patch [33] 6.44 7.51 5.68 6.35 6.00 6.50
Grey-Edge 1st-order [45] 3.52 4.02 3.72 4.76 5.01 5.80
Grey-Edge 2nd-order [45] 3.22 3.65 4.27 5.19 5.72 6.39
Double-Opponency [22] 2.37 3.27 3.46 4.38 4.62 5.28
CVP White-Patch 2.99 3.42 2.97 3.45 5.02 5.15
CVP Grey-Edge 1st-order 3.29 3.72 2.48 2.79 4.70 5.17
CVP Grey-Edge 2nd-order 2.85 3.13 2.59 2.93 4.65 5.05
CVP Double-Opponency 2.02 2.56 2.39 2.84 4.00 4.24

Table 1: Recovery angular errors of four colour constancy methods under max- and contrast-
variant-pooling (CVP) on three benchmark datasets. Lower figures indicate better perfor-
mance.

Figure 2 illustrates three exemplary results obtained by the proposed contrast-variant-
pooling (CVP) operator for two colour constancy models: White-Patch and the first-order
Grey-Edge. Qualitatively, we can observe that CVP does a better job than max-pooling in
estimating the scene illuminant. This is also confirmed quantitatively for the angular errors,
shown at the right bottom side of each computed output.

9.73◦ 1.83◦ 6.73◦ 2.59◦

11.39◦ 1.52◦ 10.31◦ 2.34◦

8.45◦ 1.45◦ 7.18◦ 1.69◦

Original Ground Truth WP CVP WP GE1 CVP GE1
Figure 2: Qualitative results of White-Patch (WP) and the first-order Grey-Edge (GE1) under
max- and contrast-variant-pooling (CVP). Angular errors are indicated on the bottom right
corner of each panel. Images are from the SFU Lab, Colour Checker and Grey Ball dataset
respectively.

1All source code and materials are available in the supplementary submission.
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3.1 Influence of the Free Parameters

For each free variable of the tested models we compared the performance of max- to contrast-
variant-pooling. White-Patch does not have any free variable, therefore it is exempted from
this analysis. In Figure 3 we have reported the impact of different σs (receptive filed size) on
Double-Opponency algorithm for the best and the worst results obtained by free variable k in
each dataset (results for all ks are available in the supplementary material). We can observe
that almost in all cases contrast-variant-pooling outperforms max-pooling. The improvement
is more tangible for the Colour Checker and Grey Ball datasets and in low σs.
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SFU Lab [5] Colour Checker [43] Grey Ball [10]
Figure 3: The best and the worst results obtained by max- and contrast-variant-pooling for
the free variables of Double-Opponency [22] algorithm (k and σ ).

Figure 4 illustrates the impact of different σs (Gaussian size) on the first- and second-
order Grey-Edge algorithm. We can observe similar patterns as with Double-Opponency
(contrast-variant-pooling outperforms max-pooling practically in all cases). This improve-
ment is more significant for low σs, for the Colour Checker dataset and for the second-order
derivative. It must be noted that the objective of this article was merely to study the perfor-
mance of max-pooling and CVP on top of the Grey-Edge algorithm. However, the angular
errors of our CVP Grey-Edge happen to be in par with the best results reported for Grey-Edge
(obtained by using the optimum Minkowski norm for each dataset [45]), with the important
caveat that CVP has no extra variables to be tuned, whereas in the Minkowski norm optimi-
sation the value of p must be hand-picked for each dataset.
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Figure 4: Comparison of max- and contrast-variant-pooling for the free variable σ of Grey-
Edge [45] algorithm (both the first- and second-order derivatives).

From Figures 3 and 4 we can observe that the greatest improvement occurs in the Colour
Checker dataset. We speculate that one of the reasons for this is the larger range of intensity
values in the Colour Checker dataset (16-bit) in comparison to the other two datasets that
contain 8-bit images, therefore, an inaccurate max-pooling is more severely penalised.
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3.2 Discussion

We would like to emphasise that the objective of this article is not to improve state-of-the-art
in colour constancy, but to show that contrast-variant-pooling (CVP) almost always produces
improvements over max-pooling. Surprisingly, the results we obtained are even competitive
with the state-of-the-art. For instance, in the SFU Lab dataset, the lowest reported angular
error is 2.1 (obtained by an Intersection-based Gamut algorithm [4]). This means that our
CVP Double-Opponency with an angular error of 2.0 outperforms the state-of-the-art in this
dataset. In the Colour Checker and Grey Ball datasets there are a few learning-based models
(e.g. Exemplar-based method [30]) that obtain lower angular errors in comparison to CVP
Double-Opponency, nevertheless our results are comparable with theirs.

Physiological evidence besides, the better performance of CVP can be explained intu-
itively by the fact that max-pooling relies merely on the peak of a function (or a region of
interest), whereas in our model, pooling is defined collectively based on a number of ele-
ments near the maximum. Consequently, those peaks that are outliers and likely caused by
noise get normalised by other pooled elements. The rationale within our model is to pool a
larger percentage at low contrast since in those conditions, peaks are not informative on their
own, whereas at high contrast peaks are likely to be more informative and other irrelevant
details must be removed (therefore a smaller percentage is pooled).

Although, the importance of choosing an appropriate pooling type has been demonstrated
both experimentally [29, 48], and theoretically [7], current standard pooling mechanisms
lack the desired generalisation [38]. We believe that contrast-variant-pooling can offer a
more dynamic and general solution. In this article, we evaluated CVP on the colour con-
stancy phenomenon as a proof-of-concept, however our formulation of CVP is generic (and
based on local contrast) and in principle it can be applied to a wider range of computer vision
algorithms, such as deep-learning, where pooling is a decisive factor [42].

In our implementation of CVP, we approximated local contrast through local standard
deviation (see Eq. 5). There are at least two factors that require a more profound analysis: (i)
incorporating more sophisticated models of contrast perception [25] accounting for extrema
in human contrast sensitivity; and (ii) analysing the role of kernel size in the computation of
local contrast.

4 Conclusion

In this article, we presented a novel biologically-inspired contrast-variant-pooling (CVP)
mechanism grounded in the physiology of the visual cortex. Our main contribution can be
summarised as linking the percentage of pooled signal to the local contrast of the stimuli, i.e.
pooling a larger percentage at low contrast and a smaller percentage at high contrast. Our
CVP operator remains always closer to max-pooling rather than to sum-pooling since natural
images generally contain more homogeneous areas than abrupt discontinuities.

We tested the efficiency of our CVP model in the context of colour constancy by replac-
ing the max-pooling operator of four algorithms with the proposed pooling. After that, we
conducted experiments in three benchmark datasets. Our results show that contrast-variant-
pooling outperforms the commonly used max-pooling operator nearly in all cases. This can
be explained by the fact that our model allows for more informative peaks to be pooled while
suppressing less informative peaks and outliers.

We further argued that the proposed CVP is a generic operator, thus its application can
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be extended to a wider range of computer vision algorithms by offering a dynamic (and
automatic) framework that is based on the local contrast of an image or a pixel. This opens a
multitude of possibilities for future lines of research and it remains an open question whether
our model can reproduce its excellent results in other domains as well. Therefore, it certainly
is interesting to investigate whether our CVP can improve convolutional neural networks.
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