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Abstract
Patch-based image completion methods often fail in searching patch correspondences
of similar materials due to shading caused by scene illumination, resulting in inappro-
priate image completion with dissimilar materials. We therefore present a novel image
completion method that additionally accounts for intrinsic reflectance of scene objects,
when searching patch correspondences. Our method examines both intrinsic reflectances
and color image structures to avoid false correspondences of different materials so that
our method can search and vote illumination-invariant patches robustly, allowing for
image completion mainly with homogeneous materials. Our results validate that our
reflectance-guided inpainting can produce more natural and consistent images than state-
of-the-art inpainting methods even under various illumination conditions.

1 Introduction
Single-image inpainting has been broadly applied to complete a blank region, such as occlu-
sion by an unexpected object, without requiring any auxiliary source image [6]. Since there
is no source image available, except the input image itself, the inpainting task that fills the
blank region is a severely ill-posed problem. Previous inpainting algorithms can be classified
into two main categories: diffusion-based or exemplar-based methods.

First, the diffusion-based approach recovers a damaged image, where missing regions are
sparse and thin [3, 6]. The solution is straightforward and robust, based on a local smooth-
ness prior, assuming that gradients near close areas are similar. However, this approach does
not work well with a large blank area. Second, the exemplar-based approach has been pro-
posed to overcome the area limitation of the diffusion-based approach [8, 12, 16], inspired
by example-based texture synthesis [10]. The exemplar-based approach separates an input
image into the source and the target region to search small source patches in the source region
to inpaint the target region with them.

The similarity of the source patch to the target region is determined as a distance in
terms of colors [16], gradients [9], Laplacians [13], depth [2], and planar structures [11].
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(a) Input with mask (b) Lee et al. [2016] (c) Ours (reflectance layer)

Figure 1: Image (a) shows an input image, where the blanket is removed (masked as red). Image (b)
presents correspondences of source patches using color and Laplacian properties [13]. Image (c) vi-
sualizes our correspondence search using intrinsic reflectance. Note that our method brings source
patches from virtually similar materials. Complete inpainting results are available in Figure 5.

These various image properties have been considered to identify more reliable source patches
for inpainting the target region. In the exemplar-based approach, the patch-similarity test
using image properties often fails in searching patch correspondences of similar materials
due to scene illumination. The exemplar-based approach frequently results in inappropriate
inpainting output with dissimilar materials in the target region.

We are therefore motivated to examine an intrinsic property of reflectance of scene ob-
jects, when searching source-patch correspondences. The intrinsic reflectances of the scene
objects help us identify source patches of similar materials without being affected by scene
illumination. We examine both intrinsic reflectances and color image structures to avoid false
correspondences of source patches from different materials (see Figure 1 for an example of
the search process) so that we can search and vote illumination-invariant patches robustly,
allowing for inpainting with homogeneous materials over the target region. We provide an
in-depth analysis of all the factors and parameters used in the proposed inpainting algorithm
and compare our results with state-of-the-art methods to validate the effectiveness of our
image completion with intrinsic reflectance guidance.

2 Reflectance-Guided Image Completion

Overview We first decompose an input image into two layers of reflectance and shading
using an intrinsic image decomposition. While many existing techniques can be used for
intrinsic image decomposition, we choose a recent CNN-based technique [17]. Since we are
motivated to devise a guidance term that is less affected by illumination, we make use of
the reflectance layer only from the decomposed layers. The reflectance layer allows us to
vote more similar patches to a hole pixel in terms of material colors without being affected
by the illumination or image structures of patches. We use the reflectance information as
an additional guidance feature term to find candidate patches. We also adopt the multiscale
approach for the overall inpainting process, following other exemplar-based approaches [13,
16], and carefully design how to use the reflectance guidance term to harmonize it with other
energy terms. Figure 2 provides an overview of the workflow of our algorithm.

2.1 Extracting Intrinsic Reflectance
Barrow and Tenenbaum [5] introduced the term of the intrinsic images that refers to the
decomposition of an image I(x,y) into two components: reflectance (albedo) R(x,y) and
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Figure 2: Overview of our algorithm. From a given image with a target mask, we first estimate an
intrinsic reflectance image using a data-driven intrinsic decomposition method (Section 2.1). We then
compute patch similarity through pyramids of color image structures and reflectances, respectively, to
yield nearest neighbor fields of patch correspondences. For reconstructing colors, we examine not only
image color structures but also intrinsic reflectances (Section 2.2).

illumination (shading) S(x,y) under the assumption that the product of reflectance and shad-
ing elements becomes the original image. We then define the following simple relationship
between the original and element images:

I(x,y) = S(x,y)R(x,y). (1)

Splitting into two intrinsic images from a single input image is a long-lasting ill-posed prob-
lem since it is under-constrained. In our method, we adopt a recent data-driven approach [17]
to obtain the intrinsic reflectance layer from the input image.

Nonetheless, the reflectance information cannot be solely used for calculating patch sim-
ilarity in our inpainting method, since the reflectance layer loses high-frequency details sig-
nificantly, compared to the original image [see Figure 1(c)]. To overcome the over-smoothed
property of the reflectance with our similarity calculation, we utilize the original image’s
detail using Laplacian coefficients [13]. Since those high-frequency details in the image
are less sensitive to illumination than colors are, we can utilize the original image’s high-
frequency information along with the reflectance’s color information. See Section 2.2.1 for
more details.

2.2 Reflectance-Guided Image Completion
Our inpainting method is based on the traditional patch-based approach [16], aiming to pre-
serve global consistence in addition to image structures. The inpainting process starts from
the coarsest level to the finest level in the image pyramid (see Figure 2). The coarsest level
image is a mostly downsampled image, where the hole region is also reduced as small. We
can inpaint the small hole merely using neighboring information based on a diffusion-based
technique [7]. Once the coarse level image is filled, the higher-level image is reconstructed
by performing upsampling. We then perform the inpainting process in the level. This pro-
cess is iterated until we inpaint the finest level of the original resolution in the pyramid. Our
filling-in method is based on a recent Laplacian-based method [13] with the main difference
of utilizing reflectance guidance for similarity calculation and reconstruction.

Our inpainting process starts with two images: an input image and its reflectance image.
To inpaint the original image with the guide of reflectance, it is necessary to fill the hole
in the reflectance image as well. For this process, we also build two image pyramids of
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CIELAB colors and Laplacians for not only the color image, but also the reflectance image,
respectively. The total number of pyramids is four. In the multiscale approach, inappropriate
candidate patches in a coarse level can propagate in a larger area in finer levels. To mitigate
this issue, we utilize reflectance information to find better matching candidate patches, which
might be hard to be found only in the original image due to the illumination.

2.2.1 Searching Candidate Patches

Measuring similarity between candidate patches and hole patches is one of the critical parts
in inpainting that determines the quality of completed images. While our method utilizes two
different image properties of color and intrinsic reflectance for inpainting, we accommodate
them into a single energy function that contains a new reflectance guidance term. We use
this function for guiding the search of candidate patches.

We define I as an original image and R as its reflectance layer. With the user-defined
mask, we can divide the input image and the reflectance layer into the target hole area T and
the source area S. Since we utilize the multiscale approach, symbols with under subscript
of k refer to the k-th level of the multiscale pyramids, for instance, Ik and Rk mean the k-th
levels of the image pyramids on the original image and the reflectance, respectively. Given
a hole pixel p in k-th level (p ∈ Tk), its patch PIk and PRk refer to the w×w patch centered at
the pixel p in each image Ik and reflectance Rk, respectively; we use 7×7 for all the results.

Our similarity equation consists of two terms: the original image coherence term and the
reflectance guidance term, as follows:

E(p) = ∑
QIk ,QRk∈Sk

min{Ecoherence(PIk ,QIk)+Eguidance(PRk ,QRk)}. (2)

The above equation aims to find out the best candidate patch Q for a patch P, that minimizes
the energy function. Note that QIk and QRk are extracted in the same location, but in different
image spaces Ik and Rk. Once we found the candidate patch for each hole pixel that mini-
mizes our energy function, the location of it is stored as nearest neighbor fields (NNFs) and
used for reconstructing the hole area.

Image Coherence Our image coherence term Ecoherence measures the distance of both
colors and Laplacian edges between target and source patches using the original image in-
formation only:

Ecoherence(PIk ,QIk) = αkC(PIk ,QIk)+ γC(∇2PIk ,∇
2QIk), (3)

where C is the sum of squared distances between two patches, and αk is a weighting term
to determine the contribution of the original color information in the k-th level. Laplacian
coefficients are used to detect the edge information, and γ is used to modulate the weight of
the edge distance for the overall patch similarity. For obtaining Laplacian coefficients, we
inherit the inpainting approach using the difference of Gaussians (DoG), following [13].

Reflectance Guidance Since the reflectance image is more independent of the illumi-
nation effects than the input color image, we expect that the reflectance distance can lead
us to find candidate patches of more similar materials, which might be considered as differ-
ent patches due to illumination changes in the input image. The reflectance weight in the
guidance term is critical for balancing the color and the reflectance similarity. Similarity
search using the reflectance only often fails due to significant color differences between the
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(a) Input image (b) Reflectance image (c) Laplacian of the input image (d) Laplacian of the reflectance

Figure 3: Comparison between the Laplacian coefficients of the input image (a) and its reflectance
image (b). Even though the reflectance image is less affected by illumination than the input image, its
detail is lost significantly compared to the original image. Accordingly, we use Laplacian coefficients
(c) of the input image for the edge information. (d) shows Laplacian coefficients of the reflectance.

reflectance and the shaded color. We carefully modulate the reflectance weight with consid-
eration of the level of operation.

Our reflectance guidance term Eguidance measures the L2 color distance between the target
and source patches in terms of reflectance:

Eguidance(PRk ,QRk) = βkC(PRk ,QRk), (4)

where βk is the weighting term to modulate a contribution of the reflectance distance in
the similarity function in the k-th level. For accounting for color distances, we employ the
CIELAB [14] space for both original color and the reflectance image.

Note that we utilize only color information of the reflectance, not its edge information,
since the reflectance image contains less details compared to the original image (Section 2.1).
Figure 3 shows the Laplacian coefficients of the original and reflectance images. Even
though the Laplacian of the reflectance image contains overall object edges, they lose details
of the image. Instead, we compensate the detail information from Laplacian coefficients of
color layers mainly. For finding the candidate patch location as NNFs, which minimizes
our similarity equation [Equation (2)], we utilize the Patchmatch algorithm [4] for efficient
searching.

2.2.2 Adaptive Reflectance Weights

The reflectance information can guide us to find appropriate candidate patches, but without
original color information, the result images tend to suffer from artifacts due to small color
offsets. We therefore address this issue by adaptively adjusting weights of our reflectance
term in the multiscale approach.

In the multiscale approach, coarser level images contain more general scene information,
and finer level images contain more detail information. As a result, it is desirable to use the
reflectance layer more in coarser levels for properly guiding patch search within similar
materials. It is more appropriate to weight the image color layer more in finer levels. We
formulate this idea simply by adaptively adjusting weights upon the level. In other words, we
assign higher reflectance weights to coarser level images and relatively smaller reflectance
weights to finer level images. For this, we use level-dependent αk and βk weights, and they
are defined as the following:

βk = β −∆ and αk = α +∆,

∆ = β × k−1
N−1

× σR

σI
,

(5)

where 0 < k ≤ N. N indicates the maximum level of our multiscale approach. Initial re-
flectance and image weights are given by input parameters. For all of our experiments, we
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assign 0.05 to α , 0.65 to β . Note that we aim to consider the reflectance layer more in
coarser images and thus we set a higher value to β than α . As the level goes up, the re-
flectance weight then decreases, while the image weight increases as an amount of ∆. The ∆

value is proportional to the ratio of reflectance and image standard deviation, to equalize the
reflectance’s distance according to its image statistics [15]. Among parameter values, we set
αk +βk + γ = 1 for all the results.

Based on the weight adjustment according to the image level, we effectively guide the
appropriate candidate area considering the reflectance in coarser levels, while preserving the
image consistency in finer levels, which get closer to the original image size. The other
weight, the edge weight, does not need to be changed, so we keep the initial edge weight (γ)
the same throughout all the levels.

2.2.3 Reconstruction

Our reconstruction process follows the standard voting scheme used in the common exemplar-
based methods [16]. The main difference for our reconstruction method over the existing
methods is that our method utilizes both the original and reflectance images. Note that in
order to find out NNFs, we account for three different types of image properties: image
colors, image edges and reflectances (as described in Section 2.2.1), while we examine an
additional property of reflectance edges, in addition to the three properties to reconstruct
inpainted colors. We therefore need to recalculate patch similarity to determine weights for
the voting process, using Equation (6), rather than inheriting similarity calculated from NNF
search [Equation (2)] .

To reconstruct colors, we copy patches from the source to the target region with w×w
sized patches. Each pixel in the hole can have several overlapped information from differ-
ent patches. To reconstruct a color value with such overlapped patches, we calculate the
weighted sum of the overlapped information. A weight term for a pixel p, w(p), consists
of two factors: (1) patch similarity about another pixel q, sim(p,q), whose patch is nearest
to that of p, and (2) the distance from the boundary information, Λ(p) for avoiding discon-
nected completion around the boundary by giving a more weight to the information near the
hole boundary. The weight is the product of these two values: w(p) = sim(p,q) ·Λ(p), where

the patch similarity sim(p,q) is defined as a Gaussian function, exp
(−DI|R(p,q)

2σ2

)
, where σ is

a term to adjust similarity smoothness.
For reconstructing the target region of the original input image and its reflectance image,

we use two separate similarity functions for each image. The distance functions of simi-
larity, sim(p,q), in the original image and the reflectance layer are denoted as DI(p,q) and
DR(p,q), respectively. They are defined as follow:

DI|R(p,q) = (1− γ)C(PI|R,QI|R)+ γC(∇2PI|R,∇
2QI|R), (6)

where γ is the same weight term for adjusting the edge information in the patch similarity
[Equation (3)], and I|R indicates the original image or the reflectance layer.

3 Results
We evaluate the performance of the proposed method with various scenes (Figures 4 and 5),
where scene illumination varies significantly, compared with state-of-the-art inpainting meth-
ods: Photoshop content-aware fill (based on [16]), Huang et al. [11], Darabi et al. [9], and
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(a) Input image with hole (b) Photoshop (c) Darabi et al. [2012] (d) Lee et al. [2016] (f) Ours

Figure 4: Our method inpaints the input image by separating intrinsic reflectance and shading so
that our method can complete the image with intrinsic scene materials, rather than shadowed color
values. Other state-of-the-art methods inpaint the blank region using color values directly, resulting in
unrealistic artifacts.
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Figure 5: Natural scenes under various illumination are inpainted. While our method inpaints target
regions with patches from similar materials of the scene objects, other methods often inpaint the region
with patches from different materials. Refer to the supplemental material for more examples.
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Figure 6: With common datasets used by other inpainting algorithms, our reflectance-based method
is strongly competitive to a state-of-the-art method using Laplacian [13], in addition to the robust
performance on natural scenes under strong illumination.

Lee et al. [13]. We use available codes written by authors and commercial software for com-
parison. In addition, we compare results on common reference images for inpainting (Fig-
ure 6) to validate that our method can perform consistently with general scenes. Refer to the
supplemental material for high-resolution result images.

Figure 4 compares results of the checker shadow illusion image, rendered by Adelson [1].
Scene illumination that drops soft shadow over checkerboard patterns alternates the lightness
intensities of the patterns. Since pixel color-based approaches just recognize the shaded
pixel values as colors of the object materials, the original structure of the object cannot
be inpainted properly due to shading. However, our method uses intrinsic reflectance as
guidance so that it can reconstruct the original structure more plausibly than the state-of-the-
art methods.

Figure 5 compares a series of inpainting results of real scenes, where some parts of the
scene are strongly illuminated with significant variation. In these natural scenes, the search-
ing and voting processes of source patches are affected by scene illumination in previous
inpainting methods. For instance, the first column image shows very subtle differences of
colors near the target blank region, since most regions of the scene belong to shadow. Our
method can inpaint the target region with patches from similar materials, while other previ-
ous methods suffer from artifacts on image structures due to source patches searched from
significantly different materials that might present similar image structures in the scene. The
rest of the columns present results with a wider variation of scene illumination, which hinders
the example search process in the previous inpainting algorithms. Our method can produce
more natural inpainting results consistently by completing the target regions with patches
from similar materials.

For fairness in comparison, we evaluate the performance of our method with reference
image datasets, commonly used by other inpainting algorithms. Figure 6 compares the re-
sults of our method with those of a state-of-the-art method using Laplacian [13]. The per-
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formance of our method is highly competitive to the Laplacian method, in addition to the
enhanced performance with natural scenes under strong illumination, as shown in Figure 5.
As shown in the third column, when the variation of colors in the input image is small, our
method can outperform the existing method thanks to intrinsic reflectance guidance.

4 Discussion

(b) Reflectance guide
(synthetic scene)

(a) Chrominance guide
(synthetic scene)

(d) Reflectance guide
(real-world scene)

(c) Chrominance guide
(real-world scene)

Figure 7: Our results using two different guidances: (a),(c) chrominance and (b),(d) reflectance.
Reflectance-guided inpainting reconstructs intrinsic image structures successfully, while chrominance-
based inpainting suffers from artifacts in both synthetic scene and real-world scene. We chose the use
of reflectance guide.

Among various color properties, both chrominance and reflectance are luminance-invariant
features in the color space. Chrominance can be obtained easily by simply decomposing the
input color images into the luminance and the chrominance layers, while intrinsic reflectance
can be achieved by using an intrinsic algorithm, resulting in heavier computation than using
chrominance. We therefore examine if chrominance can substitute reflectance in our algo-
rithm. We evaluate the performance difference of our method with the different choice of the
image property. As shown in Figure 7, the performance of our method is more robust when
it uses reflectance guidance, rather than chrominance guidance. We found that when we
use chrominance as guidance of materials for inpainting, chrominance guidance disregards
the brightness information of materials. In contrast, reflectance guidance accounts for both
chrominance and brightness (as luminance) when examining intrinsic material properties.
We therefore chose reflectance guidance over chrominance guidance despite of computa-
tional costs.

In addition, we adopt a state-of-the-art intrinsic image method using a deep neural net-
work [17] to calculate intrinsic reflectance from an input image. However, since decom-
posing reflectance from a single image is also a severely ill-posed problem, the adopted
method could fail sometimes in calculating accurate reflectance. It is not surprising that our
method performance is also affected by the accuracy of the employed intrinsic image algo-
rithm. Intrinsic image decomposition has been extensively developed to achieve significant
enhancements in recent years. We believe an intrinsic decomposition method in near future
could be an alternative to be beneficial to enhance the robustness of our method.

5 Conclusion and Future Work
We have presented an reflectance-guided image completion method that can handle a wide
variety of images that include significant illumination variation. Our method utilizes re-
flectance as a guidance term when calculating patch similarity, so that we can find appropri-
ate patches, even when we have strong illumination variations. In addition, the reflectance
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term can identify different materials through the search process of source patches, reduc-
ing a chance of bringing source patches of different materials, even though they are simi-
lar in terms of color and structure. Currently, we adopt an intrinsic image decomposition
method without any modification for our method. Revising the decomposition method into
our framework remains as future work.
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