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Abstract

For robotics and augmented reality systems operating in large and dynamic environ-
ments, place recognition and tracking using vision represent very challenging tasks. Ad-
ditionally, when these systems need to reliably operate for very long time periods, such
as months or years, further challenges are introduced by severe environmental changes,
that can significantly alter the visual appearance of a scene. Thus, to unlock long term,
large scale visual place recognition, it is necessary to develop new methodologies for
improving localization under difficult conditions. As shown in previous work, gains in
robustness can be achieved by exploiting the 3D structural information of a scene. The
latter, extracted from image sequences, carries in fact more discriminative clues than
individual images only. In this paper, we propose to represent a scene’s structure with
semi-dense point clouds, due to their highly informative power, and the simplicity of their
generation through mature visual odometry and SLAM systems. Then we cast place
recognition as an instance of pose retrieval and evaluate several techniques, including
recent learning based approaches, to produce discriminative descriptors of semi-dense
point clouds. Our proposed methodology, evaluated on the recently published and chal-
lenging Oxford Robotcar Dataset, shows to outperform image-based place recognition,
with improvements up to 30% in precision across strong appearance changes. To the best
of our knowledge, we are the first to propose place recognition in semi-dense maps.

1 Introduction
Visual place recognition has become a highly active area of research both in computer vision
and robotics communities over past years and has many practical applications, such as au-
tonomous navigation and augmented reality. A major challenge in visual place recognition
is to achieve robustness to the appearance changes of scenes encountered in the real world
due to lighting, weather and seasonal changes.

Visual place recognition is typically cast as an image retrieval problem, where the ap-
proach is to recognize places by matching individual images of these places. One of the
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Figure 1: Images of the same intersection in the Oxford Robotcar Dataset [19] captured on
February and October 2015, and a point cloud of the same place obtained from a sequence
in May. The appearance of the scene strongly changes due to vegetation, lighting, camera
exposure and traffic. The geometrical structure of the scene as captured by DSO however
remains mostly consistent. Using the structure furthermore allows us to capture data on a
larger scope than from just one image.

most widely used approaches for matching these images is to utilize sparse local features
selected at salient regions of the image. Locally salient regions of the image are detected
and descriptors are calculated that allow direct matching of these points. Classically, hand-
crafted descriptors were used [1, 3, 15, 17, 27]. In contrast, recent methods allow learning
of more discriminative descriptors in a data-driven manner [6, 16, 30].

For computational efficiency, a query image is not directly matched to all images in the
database. Instead, images are typically reduced to compact representations [13, 22, 34] that
are inherently less expensive to match and can further exploit efficient matching methods
such as inverted indices or kd-trees. Moreover, image-based place recognition based on
these techniques has been recently shown to be trainable in an end-to-end manner [2].

A drawback of the image matching approach is that it is inherently sensitive to changes
in appearance that can be due to lighting, weather and seasonal changes. Exploiting the ge-
ometry of scenes can help to remedy this problem, but to date only very few image-based
approaches for visual place recognition exist that do this [14, 23, 35, 36]. It is common prac-
tice to use geometrical verification [38] as a post-matching step, yet this can only be used
to reject false positive matches, but not to obtain more true positives. An interesting alter-
native approach to image-to-image matching is to match 2D features directly to the points
of a 3D point cloud [29], which results in a tighter integration of matching and geometric
verification.

In a robotic context, regular cameras provide more information that can be used for
place recognition than just individual images. It has been previously proposed to exploit
information contained in the sequence in which images occur [18, 21] and in sparse point
clouds extracted by feature-based structure from motion (SfM) algorithms [7]. We propose
to go one step further and to exploit the information contained in semi-dense point clouds.
In particular, we mean point clouds that are created by methods that track and triangulate
all image points with a gradient, not just corners. Examples for such methods are LSD-
SLAM [8], DSO [9] and more recently methods using event-based cameras [25, 26]. Based
on examples like that in Fig. 1, our intuition is that the overall shape of these point clouds
is more invariant to environmental changes than the appearance of the scenes or the sparse
point clouds obtained from triangulating tracked features. To the best of our knowledge, we
are the first to consider semi-dense point clouds for place recognition.

To allow for a similar efficiency as in image-based place recognition, we base our method
on local descriptor matching. We evaluate the ability to discriminatively describe semi-dense
point clouds of several methods from the literature. In particular, we also propose to use a
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Figure 2: The used place recognition pipeline. From an initial semi-dense point cloud we
extract and normalize local patches. The patches are described using either hand-crafted de-
scriptors or a 3D convolutional neural network. Finally, the resulting descriptors are matched
to descriptors in the database and the descriptor matches are aggregated to keyframe matches.

trainable neural network, which, in accordance with recent trends, outperforms methods us-
ing hand-crafted descriptors. The methods are trained and evaluated on the Oxford Robotcar
Dataset [19], which contains several sequences collected by a car over a period of more than
a year. As a consequence, the recorded sequences contain strong and realistic variations in
lighting, weather and seasonal conditions, as well as occlusions by other traffic participants.

2 Related Work
2.1 Hand-crafted 3D Structural Descriptors
Many structural descriptors have been introduced for dense 3D point clouds. As an exam-
ple, Point Feature Histograms (PFH) [28] and the Sigature of Histograms of Orientations
(SHOT) [37] characterize the local geometry by computing surface normals within a neigh-
bourhood and using a histogram to describe the extracted features. However, semi-dense
point clouds do not have the required point density to estimate surface normals. Thus, we
are restricted to using descriptors which do not rely on surface normals. From those, the
neighbour-binary landmark density descriptor (NBLD) [7, 10] and the multiview 2D pro-
jeciton descriptor (M2DP) [11] have been shown to perform best in recent literature. We
thus consider NBLD and M2DP in our evaluation and detail their working principles in Sec-
tion 3.3.1.

2.2 Learned 3D Structural Descriptors
A recent development in the design of descriptors is to move away from hand-crafted features
towards features learned from massive amounts of data, in particular using neural networks.
Both VoxNet [20] and 3D ShapeNets [39] introduced the use of deep learning to encode
shapes of different objects. They focus on learning features from complete dense 3D point
clouds at object level and are designed for object classification. Work that is more aimed
at place recognition within point clouds was recently done by 3DMatch [40], which learns
a local structural descriptor using a Siamese network [5] for establishing correspondences
between partial 3D RGB-D data. The use of Siamese networks for traning discriminative
descriptors has recently proven to be successful also in the context of image-based place
recognition [2, 16].

3 Place Recognition
An outline of the place recognition pipeline we adopt is provided in Fig. 2. In this section,
we briefly describe the components of this pipeline.
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3.1 Semi-dense point cloud acquisition
As mentioned in the introduction, the semi-dense point clouds that we use for place recogni-
tion can be acquired using any system that tracks and triangulates points with nonzero image
gradient. Throughout our experiments, we use DSO [9] to acquire the semi-dense point
clouds, since it proves to track the longest on the Oxford Robotcar Dataset.

3.2 3D patch selection and rotational normalization
A random five percent of the resulting points are selected as keypoints ~p and local cylindri-
cal patches Γ are extracted around them. The patches Γ are centered around the keypoints
and their size is chosen to be as small as possible while fitting the domain Ω of the used
descriptor. Ω is defined as the subspace of R3 which contains all points contributing to the
descriptor, and no points that do not contribute to it. Since we evaluate descriptors with
different shapes of Ω, Γ varies depending on the descriptor used.

Since none of the evaluated descriptors are invariant to orientation, but the point clouds
may originate from differently oriented frames of reference, we normalize the patches in
orientation. We assume that the gravity vector is known and aligned with the z-axis, so that
the patches only need to be normalized in yaw. The shape of the patches Γ is cylidrical to
allow for a normalization that is independent of the initial orientation of the point cloud. We
use the normalization proposed in [4]: first, the sample covariance C of the points within the
patch is computed. Let~e0 be the unitary eigenvector corresponding to the smallest eigenvalue
λ0 of C. Then, the projection of ~e0 onto the horizontal plane is chosen as the x-axis of the
normalized patch. Since ~e0 is ambiguous (−~e0 is also an eigenvector of λ0), we choose the
~e0 which points towards the first observer of the keypoint ~p.

3.3 Calculation of 3D patch descriptors
3.3.1 Hand-crafted Descriptors
We evaluate two hand-crafted descriptors that were originally designed for dense and sparse
point clouds: NBLD [7] and M2DP [11]. These are recently proposed hand-crafted descrip-
tors that unlike many other structural descriptors do not rely on surface normals. They report
superior performance to previous descriptors that also do not use surface normals.

The NBLD descriptor has a cylidrical domain Ω, with respectively na, nr and nz sub-
divisions in azimuthal, radial and z-direction, see Fig. 3(a). It considers the point density
in each cell, that is, the point count divided by the cell volume. Inspired by the success of
binary photometric descriptors [1, 15, 27], NBLD does not use absolute densities but rather
comparsions between densities of neighboring cells. Its 3 · nr · na · nz binary coefficients in-
dicate for each cell how its point density compares to its neighbors in radial, azimuthal and
z directions.

M2DP projects the points within its domain Ω into nE · nA 2D planes. We set Ω to be
cylidrical with a radius r and to have an infininte extent in z. Each of the nE · nA planes
crosses the keypoint ~p and is defined by its normal vector, which is expressed as (1,θ ,φ)T

in spherical coordinates. θ and φ respectively assume nE and nA linearly spaced values in
[0, π

2 ] (elevation angles) and [−π

2 ,
π

2 ] (azimuth angles). Into each plane, a polar grid with na
azimuthal and nr radial subdivisions (up to radius r) is inscribed (Fig. 3(b)). For each bin
of this grid, the amount of points that project into it are counted. All these values are stored
in a (nA · nE)× (na · nr) matrix A. Finally, the singular value decomposition A = UΣV T

is applied to A, and the first columns of U and V respectively are concatenated into the
(nA ·nE +na ·nr)-dimensional M2DP descriptor.
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(a) NBLD
domain and
subdivision.

(b) 2D pattern
used in M2DP
projections.
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32x32x32 (14x14x14)x32 (6x6x6)x32 1024x1x1 512x1x1

(c) Our 3D convolutional neural network (CNN) architecture. The input
3D patch is convolved twice and delinearized with a ReLU each time.
The output is L2-pooled and fed to two fully connected layers.

Figure 3: Visualizations for the used descriptors.

3.3.2 Convolutional Neural Network (CNN) descriptor
Inspired by the recent success of CNNs in place recognition, we adapt a 3D CNN similar
to the ones proposed in [20] and [40]. We have explored several network architectures and
present here the one with top performance. First, the points inside a cubic domain Ω are
transformed into a 32x32x32 regular voxel grid X in either of two ways: 1) binary occupancy
grid: each voxel has a binay value, which is 1 if it has any points inside, and 0 otherwise.
2) Binary density comparison grid: similarly to NBLD, the point density of each voxel is
compared to each adjacent voxel in each axis, and the comparison results are converted into
binary values. The three axes in which the comparison can be made are represented as three
channels of X . Our CNN has two 3D convolutional layers, each followed by a rectified linear
unit (ReLU), a pooling layer and two fully connected layers to map from the voxel grid X
to a 512 dimensional descriptor, as depicted in Fig. 3(c). In particular, we use L2 pooling
for the pooling layer, which has been shown to perform better than max pooling [32]. We
describe the way in which we train the neural network in Section 4.

3.4 Descriptor matching and place voting
Similarly to image-based place recognition we equate a "place" to an image frame. Thus,
we ultimately use our descriptors to match poses from which images were taken, using a
simple voting-based method [12]: first, we build an inverted index of the image frames that
can be retrieved as matching places. We call these the database frames {d}. A kd-tree
is populated with all descriptors extracted from the database sequence, and to each entry
we add a reference to all image frames that have observed the corresponding keypoint ~p.
As is common practice [2, 7], we use principal component analysis (PCA) to reduce the
dimensionality, which results in more efficient matching. The image frame references are
obtained from DSO.

A place query is then executed by identifying an image frame from the query sequence
which is considered the query frame q. Again, we can extract what keypoints {~p} are ob-
served by q from DSO. Of these keypoints, the patches are extracted and described. For each
resulting descriptor we match the closest descriptor with respect to the `2 distance from the
database kd-tree. No threshold needs to be applied to the matching.

The matched descriptor now votes for the database frame to be matched to the query
frame: each matched descriptor casts a vote for each frame from which its keypoint ~p has
been observed. Finally the vote count that each database frame d receives is defined as v(d),
and the database frame with the highest v(d) is matched to the query frame q, provided v(d)
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exceeds a vote count threshold λv.

4 Training the CNN
Given the place matching method, how should we train the CNN for outputting meaningful
descriptors? Patches obtained at the same place should result in descriptors with a low `2
distance, while patches obtained at different places should have a higher distance between
them. This can be achieved with a triplet loss function L as presented in [31] and used
in [2, 16, 40]. A triplet is defined as a collection of 3 voxel grids (X1,X2,X3) where X1 and
X2 are the voxel grids of matching patches from the training data, and X3 is the voxel grid of
a non-matching patch. The triplet loss function is defined as:

L(X1,X2,X3) = max(‖ D(X1)−D(X2) ‖2 +m− ‖ D(X1)−D(X3) ‖2,0)2, (1)

where D(X) is the descriptor of X and the margin m is a tunable hyperparameter. The triplet
loss is 0 if the distance between the matching descriptors is lower than the distance between
the non-matching ones by at least a margin m.

In order to back-propagate from this loss, we set up a so-called Siamese architecture,
since several forward passes from the network are required to compute a single cost value.
As illustrated in Fig 4(a), this architecture is constituted by three instances of the descriptor
CNN shown in Fig. 3(c) with shared weights. These instances convert each of (X1,X2,X3)
into their descriptors, and feed the descriptors into the differentiable loss function L.

4.1 Generating Training Data
In order to obtain the triplets (X1,X2,X3) from the training data, we need a method to reliably
generate corresponding and non-corresponding matches. Naively, corresponding patches
would be obtained from centering them around exactly the same location across the different
datasets. The problem with this is that while ground truth camera poses are provided, there
is no guarantee that DSO will triangulate the same points in consistent locations across se-
quences. In fact, the trajectory estimate of DSO is not perfectly aligned with the ground truth
in the first place, and it sometimes loses track. Thus, we first align the trajectory estimated
by DSO to the GPS data. At this point, we extract from each sequence local point clouds
around the same geo-referenced point that is given by a random keypoint in one of the se-
quences. Before extracting the patches Γ that are considered to be corresponding, the local
point clouds are aligned using iterative closest point (ICP). If the root-mean-square error af-
ter ICP exceeds a threshold λICP, we reject the patches. ICP alignment is done to counteract
any inconsistencies present between the DSO maps obtained for different sequences. Next,
the patches Γ are extracted from the aligned local point clouds, and normalized in orienta-
tion using the method presented in Section 3.2. Finally, the voxel grid representation X is
extracted from the aligned Γ. This allows us to extract N corresponding voxel grids, where
N is the amount of sequences in which the patch is observed. With this, we have enough
corresponding voxel grids for

(N
2

)
triplets, which provides us with plenty of training sam-

ples for each randomly chosen point. To generate a non-corresponding patch to append to a
corresponding pair, we extract Γ at a randomly selected position, which is far away from the
location of the corresponding patches.

4.2 Batch Sampling Strategy
To train the network, we perform stochastic gradient descent with a batch B of 25 triplets.
Concretely, a batch B is built of random samples from a triplet set T of cardinality 20′000,
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Triplets

(a) In order to back-propagate the triplet loss L (1), we
apply a Siamese network in which our CNN is applied 3
times with shared weights for two matching patches and
one non-matching patch.

Project

Samples

Initial

Triplets
CNN

Model

Regenerate

Hard Triplets

TRAINING

CYCLE

(b) We use a batch sampling strategy which prefer-
entially samples triplets that exhibit large loss, thus
accelerating the learning process.

Figure 4: Illustrations of the concepts used in the training of our CNN.

generated through the method described in the previous section.
Inspired by boosting, multiple works have recently reported the benefits of a hard nega-

tive mining policy, where the optimization is focused on samples with high loss [16, 24, 33].
However, as proposed by [16], we do not generate difficult samples in a pre-processing step,
but we compute them on the fly. The advantage of this approach is that the optimizer points
its attention on currently mis-classified samples, i.e., on hard triplets. Those are defined as
(X1,X2,X3) triplets in which X3 is one the nearest neighbours of X1 in descriptor space, even
though they should not be matched.

To prevent the optimizer from spending too much effort on correctly classifying noisy
examples, henceforth over-fitting, we substitute every K = 2 epochs only 5% of the training
samples with hard triplets, produced from the same training dataset. This cycling strategy,
depicted in Fig. 4(b), experimentally proved to reduce training times while drastically in-
creasing performance, confirming results reported in previous work.

5 Experiments
5.1 Dataset

For all of our experiments, we employ the challenging Oxford RobotCar Dataset [19]. This
contains a large set of image sequences recorded by a car traversing the same path several
times over the course of more than a year. Several sequences were recorded for each sea-
son, allowing to test the localization performance on a large scale. The dataset was chosen
because of its high variance in places’ visual appearance, as shown in Fig 1. Strong visual
changes result in fact from the presence of occluders, from difference in illumination and
viewpoint conditions, and eventually from environment variations across seasons.

To account for all seasons while restricting ourselves to a manageable amount of data,
we select 11 image sequences, with at least 2 of them for each season. Each sequence has a
spatial extent of around 10km, and is divided into geographically non-overlapping training
and testing sets, as shown in Fig. 5(a). The training splits from all chosen sequences are
joined together to create a single large training set. This training set is used for training the
proposed CNNs and for fine-tuning a visual place recognition baseline, see below.
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(a) The spatial extent and geographical training-testing split, illus-
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Figure 5: Training-testing split and dimensionality analysis with the Matthews Correlation
Coefficient (MCC).

tp fp fn

Database place d is
matched to query q.

If |~pq−~pd | ≤ re 1 0 0
Else, if ∃d′ ∈ D, |~pq−~pd′ |< re 0 1 1
Otherwise 0 1 0

No database place is
matched to query q.

If ∃d′ ∈ D, |~pq−~pd′ |< re 0 0 1
Otherwise 0 0 0

Table 1: True positives, false positives and false negatives evaluated for each query place q.
Here, ~pi are ground truth positions.

5.2 Evaluating Place Recognition Performance

To evaluate the performance of our methods, we match pairs of testing sequences against
each other. From all the possible pairs, we selected 10 of them, in such a way that one
sequence for each season would be matched not only against another one from the same
season, but also against one from each other season. For each evaluated pair, precision and
recall are computed using the (true positive, false positive, false negative) case distinction
presented in Table 1, where the GPS distance threshold re is set to 25m.

In the following, we report results when using NBLD, M2DP and our CNN in the
pipeline described in Section 3. Before evaluation, all of the above descriptors are pro-
jected down to a 25-dimensional space via PCA. Fig 5(b) reports an evaluation of the CNN
descriptor at different target dimensions. Heuristically, we have observed the dimensionality
of 25 to be the best trade off between performance and computational complexity. Fur-
thermore, we compare to NetVLAD [2] as a state-of-the-art image matching based method.
The NetVLAD descriptor, however, is projected with PCA to a 128 dimensional space, as
it was reported by the authors to be one of the most performing projection dimensions. We
evaluate NetVLAD for two sets of weights: the provided off-the-shelf weights (VGG-16 +
NetVLAD + whitening, Pittsburgh) and a set of weights obtained by fine-tuning the off-the
shelf weights on our training data for 8 epochs. Given the large size of our training dataset,
this corresponded to 80 hours. For the fine-tuning, the VGG-16 part of the network was
fixed.
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Figure 6: Precision-recall curves for the evaluated methods (our CNN with og: occupancy
grid, dcg: density comparison grid, the hand-crafted descriptors NBLD and M2DP as well
as the baseline image matching method NetVLAD with ots: off-the-shelf and ft: fine-tuned
weights). Learning-based descriptors use input patches of size 20x20x20m3, NBLD uses a
radius of 10m and a height of 20m. We randomly select 5% of the point cloud points as
keypoints.

6 Results
In the 10 considered place recognition cases, we observe a wide range of behaviours for
the evaluated methods. Precision-recall curves for the four most representative cases are
reported in Fig. 6 while the area-under-curve (AUC) measure for all of them are reported
in Table 2. In six out of ten cases, all structural descriptors outperform NetVLAD, that is,
structural descriptors have consistently better precision and recall like in Figs. 6(a) , 6(c). In
two out of ten cases, NetVLAD outperforms the structural descriptors in recall, although it
exhibits lower precision at lower recall values, like in Fig. 6(d). Finally, there remain two
cases like in Fig. 6(b), where NetVLAD partially beats the hand-crafted descriptors but not
the learned ones. Overall, the learned structural descriptors, which are barely distinguishable
in performance, outperform the hand-crafted ones by margin between 5−20%, with the one
notable exception shown in Fig. 6(c). Here, NBLD outperforms the learned descriptors by a
small margin in recall. We speculate that this is due to the inherent robustness of the cylin-
drical descriptor domain of NBLD to noise in the orientation normalization: in a cylindrical
descriptor, all bins in radial direction are equally affected by noise in rotation, while in a
cubic domain, such as the voxel grid used as CNN input, the outer bins are disproportionally
highly affected by rotational normalization noise.

For the structural descriptors, there is a good correlation between the performance and
whether the sequences stem from the same season. Interestingly, this correlation is not as
strong for NetVLAD. However, we have found that out of the six pairs in which NetVLAD
performs poorly, four involve the sequence 2015-10-30-13-52-14. When inspecting this
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Sequence pairs
CNN

(ours, og)
CNN

(ours, dcg)
NBLD

[7]
M2DP

[11]
NetVLAD

[2](ots)
NetVLAD

[2](ft)
2015-05-19-14-06-38 to
2015-05-22-11-14-30 0.774 0.767 0.651 0.561 0.408 0.482

2015-05-19-14-06-38 to
2015-08-13-16-02-58 0.736 0.731 0.7 0.561 0.572 0.583

2015-05-19-14-06-38 to
2015-10-30-13-52-14 0.583 0.589 0.611 0.52 0.396 0.427

2015-05-19-14-06-38 to
2015-02-10-11-58-05 0.419 0.41 0.351 0.272 0.495 0.537

2015-08-13-16-02-58 to
2014-07-14-14-49-50 0.764 0.751 0.672 0.507 0.64 0.587

2015-08-13-16-02-58 to
2015-10-30-13-52-14 0.557 0.551 0.496 0.382 0.259 0.218

2015-08-13-16-02-58 to
2015-02-10-11-58-05 0.489 0.482 0.379 0.294 0.512 0.496

2015-10-30-13-52-14 to
2014-11-28-12-07-13 0.599 0.579 0.454 0.329 0.003 0.002

2015-10-30-13-52-14 to
2015-02-10-11-58-05 0.443 0.434 0.351 0.28 0.069 0.078

2015-02-10-11-58-05 to
2014-12-12-10-45-15 0.594 0.597 0.491 0.364 0.138 0.158

Table 2: The area under the precision-recall curve (AUC) for the evaluated sequence pairs
(query to database) and methods (og: occupancy grid representation, dcg: density compari-
son grid representation, ots: off-the-shelf, ft: fine-tuned).

sequence, we found that it was captured with exceptionally low exposure when compared to
the other sequences. Low exposure seems to disproportionally affect NetVLAD more than
the structural descriptors. Fine-tuning NetVLAD on our training data gives it a performance
boost in six out of ten cases, but does not affect much its performance relative to the structural
descriptors. In four instances, the fine-tuning even has a negative effect on NetVLAD’s
performance, indicating that the off-the-shelf weights generalize very well to the Robotcars
dataset.

7 Conclusion
In this paper, we have presented a novel approach for vision-based place recognition using
semi-dense point clouds. Moreover, we have presented a novel approach to learn powerful
descriptors in a data-driven manner, showing large improvements over hand-crafted feature
based models. Throughout several experiments, we have shown that the information carried
by semi-dense 3D point clouds can provide an improvement in robustness over image based
approaches, in particular when tested on challenging conditions. Future work could explore
the possibility of combining our methodology with appearance-based methods in order to
achieve further robustness in long-life, large-scale localization.
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