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Abstract
The major challenge for skeleton-based action recognition is to distinguish the dif-

ference between various actions. Traditional Recurrent Neural Network (RNN) structure
may lead to unsatisfactory results due to the inefficiency in capturing local temporal
features, especially for large-scale datasets. To address this issue, we propose a novel
Temporal Perceptive Network (TPNet) to enable the robust feature learning for action
recognition. We design a temporal convolutional subnetwork, which can be embedded
between RNN layers, to enhance automatical feature extraction for local temporal dy-
namics. Experiments show that the proposed method achieves superior performance to
other methods and generates new state-of-the-art results. The model won the first place
in the ACCV Workshop Large-Scale 3D Human Activity Analysis Challenge in Depth
Videos.

1 Introduction
Human action recognition techniques facilitate a broad range of practical applications, e.g.
video surveillance, video understanding, and human-computer interaction. It aims to classify
the specific actions in a video according to its content. Different from image classification,
the action recognition task involves temporal dynamics modeling, which makes the problem
more challenging. To recognize human actions in a raw video clip, the features of motion and
appearance should be considered jointly. Earliest works are first based on RGB video frames.
It shows great potential in the field of action recognition for the methods based on densely
sampled trajectories [26, 27] or Convolutional Neural Network (CNN) [5, 19, 28, 31].

Alongside with RGB based action recognition, there is a trend of exploiting devices
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Figure 1: The architecture of the TPNet. The input raw skeleton sequence is made into a
spatial-temporal tensor and pushed into the LSTM layer. One TP layer is placed after 1st

LSTM layer for local temporal modeling. In the final LSTM layer, only the output of the
last time step is sent to the final fully-connected layer for classification. Finally, the SoftMax
activation predicts the probability for a sequence belonging to one action category.

equipped with color-depth sensing cameras like Microsoft Kinect to capture skeleton data
for human action analysis. This kind of device can provide better observation of human
body. According to the biological research [11], the skeleton data can provide the valuable
and comprehensive representation of a series of human dynamics. Due to its unique char-
acteristics, it shows great robustness to illumination variation, clustered background, and
camera motion. Because skeleton data is of lower dimension compared with CNN features,
to model its temporal dynamics can be much more time-efficient and power-efficient. By
considering co-occurrences of local features [6, 17] and handcraft temporal representations
[23, 30], semantic features for further classification can be extracted from skeleton repre-
sentations. Some recent works have proposed new low-level graph based representations for
classification [13, 29]. And in deep learning method, due to succinctness of skeleton data,
recurrent neural network (RNN) models can be naturally used to model temporal dynam-
ics [14, 32]. Applying RNN derived networks like Long Short-Term Memory (LSTM) [9]
or Gated Recurrent Units (GRU) [1] is one way to achieve better performance for skeleton
based action recognition. Though the LSTM network is designed to capture both long-term
and short-term feature for temporal-distributed sequences, its ability to model some extra
short-term dynamics is restricted. Once the video clips go longer, this drawback signifi-
cantly affects the improvement of recognition performance.

In this paper, we propose a novel Temporal Perceptive (TP) subnetwork. Our motivation
comes from the rethinking of how we view an object in the real world. To fully understand
one object, we need to both view it as a whole system as well as view it in detail to investigate
its mechanism. This kind of idea is also employed in the field of designing and analyzing
CNNs with the concept of receptive field [8, 16].

Figure 1 shows our end-to-end model for skeleton action recognition. The sequential
feature map generated by the 1st LSTM layer is pushed into the Temporal Perceptive sub-
network with temporal convolution. The extracted local feature maps are then fed into the
following feed-forward layer. In the final LSTM layer, only the output of the last time step is
sent to the final fully-connected layer for classification. Finally, the SoftMax activation pre-
dicts the probability for a sequence belonging to one action category. With a joint training
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of the whole network, the parameters of the convolution kernel are tuned to be able to model
fine-grained temporal features. The full model is able to capture both long-term semantic
action feature and extra-short-term motion dynamics. Experimental results show that our
proposed TP layer can further improve the accuracy of action recognition. By visualizing
the weights of the convolutional kernel, we are convinced that this layer learns the optimized
transformation we expect the network to learn during joint training.

2 Related Works
In this section, we review previous works related to our work on deep learning for action
recognition and local temporal modeling.

Deep learning for action recognition: Many deep learning based methods have been
proposed for action recognition on both raw RGB modality and skeleton modality. For RGB
frames, it is common to separately train a temporal model and a spatial model to jointly
model temporal dynamics and appearance feature [5, 19, 28]. Optical flow maps for frame
sequence are extracted and stacked before they are fed into the sophisticated CNNs like
ResNet [8] or GoogleNet [22]. The CNN models are first fine-tuned for the target dataset
to reduce cross-dataset variation using frames in the video clips. With a network fusion of
the temporal and spatial subnetwork, the prediction result is given through the final SoftMax
layer. These methodologies achieved promising performance on large-scale action recogni-
tion benchmarks like UCF101 action datasets[21].

Local temporal modeling: With the development of color-depth sensing devices, meth-
ods for high-performance action recognition on human skeleton data have been proposed.
Action recognition problems can be approached by simply applying LSTM on raw skeleton
data. In [32], bidirectional LSTM is exploited to model long-term and short-term feature of
skeleton dynamics. In order to enable the network to learn to model the motion of different
parts of the body separately, full-connected layers with weights regularizations are added
to the network to automatically learn the co-occurrence of the joints. Song et al. [20] pro-
posed the spatial and temporal attention mechanism to capture the salient part of the human
skeleton and motion sequence to further reduce noise and enhance feature capturing. In the
work of [30], they calculate the acceleration and velocity of each joint and treat them as the
local feature for further classification. This non-parametric approach is artificially defined
and may not be sufficient to accurately model local dynamics. Veeriah et al. [25] proposed
a modified LSTM unit to learn salient dynamic patterns with high order derivatives during
the training of LSTM using Back Propagation Through Time. However, methods discussed
above either have such heavy parameter space that training and inference are computation
consuming and are easily leading to an unsatisfactory local minimum or are weak at explor-
ing local temporal features. In [3], a method based on deep CNN is proposed for skeleton
action recognition, which is a totally different approach using CNN for spatial-temporal
modeling exploiting the sophisticated deep convolution. However, it is based on CNN and
sequences have to be downsampled or cropped to the same length to fit the input size. And
it can hardly be used to form a real-time system.

Methods mentioned above mainly focus on the long-term dynamics, while local tem-
poral modeling is also important to recognize actions involving subtle motions. Thus, we
propose the TP layer to model extra-short-term dynamics without introducing many param-
eters. Our proposed method exploits a general temporal convolutional mechanism based on
LSTM structure to learn the local feature of skeleton sequence. As the convolution is only
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applied on the temporal dimension with few additional parameters, the computation is ef-
ficient. The learned parameters of the convolutional layer enhance the learning ability of
the whole network, compared with non-parametric solutions. The proposed subnetwork is
compatible with both raw skeleton sequence and time-distributed high-level LSTM feature,
which means its ability to enhance local feature extraction is universal.

3 Overview of RNN and LSTM
In this section, we briefly review the Long Short-Term Memory (LSTM) network, which is
one particular kind of Recurrent Neural Network (RNN) widely used for temporal dynamics
modeling.

Figure 2(a) shows the basic structure of RNN. The RNN is a kind of neural networks
where connections between units form a directed cycle. The structure enables the neuron to
generate a new output according to both its history and the new input. This feature enables
the temporal dynamics modeling. However, the learning capability of RNN in the temporal
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Figure 2: Structure of RNN and LSTM. (a) Simple RNN, (b) LSTM Unit.

field is largely restricted by gradient vanishing effect [9]. It fails to model some long-term
dynamics necessary for a long video clip. So LSTM is developed as an improved RNN to
address this problem [7, 9], as shown in Figure 2(b). LSTM is able to maintain and process
information over time with a self-connected memory cell ct . At each time step, the network
can choose to read, write or reset the memory cell governed by the input gate it , forget gate
ft and output gate ot . Their activations can be summarized as follows,

it = σ(Wxixt +Whtht−1 +Wcict−1 +bi),

ft = σ(Wx f xt +Wh f ht−1+Wc f ct−1 +bf),

ct = ft� ct−1 + it� tanh(Wxcxt +Whcht−1 +bc),

ot = σ(Wxoxt +Whoht−1 +Wcoct +bo),

ht = ot� tanh(ct).

(1)

Here � denotes the element-wise product, σ(x) denotes the sigmoid function. By applying
these operations we have an output response ht for each neuron at every time step. With the
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help of these inner gates, LSTM units can now learn to remember and forget, acting more like
a biological neuron of remembering. This kind of structure can take care of both long-term
and short-term information, making it practical for temporal modeling. At the final LSTM
layer, we select the last ht as it contains feature of all the time steps.

4 Proposed Method
In this section, we introduce our end-to-end model for action recognition with temporal per-
ceptive layer. We design the model to automatically learn a temporal convolutional kernel
for local feature representation.

4.1 Motivation
Our motivation comes from the data augmentation techniques and the common practice of
employment of the velocity and the acceleration in skeleton-based action recognition. Data
augmentation can effectively boost feature learning and improve the classification perfor-
mance especially for small-scale datasets. To adapt to large-scale datasets which already
contain enough variation in the training samples, it is necessary to enable parametric learn-
ing to selectively augment certain aspect of the data. Following this idea, we employ con-
volutional operations in RNN-based deep neural networks. By producing several feature
maps from one sequence through different filter, different aspect of the feature are evalu-
ated and selected. Traditional skeleton-based action recognition methods use velocity and
acceleration information as hand-crafted features for further classification [30]. It is an effec-
tive practice for cases like discriminating between punching and pushing. In discrete form,
velocity vt and acceleration at at time t can be expressed as,

vt = pt − pt−1 = [1,−1]� [ct ,ct−1],

at = vt − vt−1 = [1,−2,1]� [ct ,ct−1,ct−2],
(2)

where ct denotes the coordinate of a joint at the tth time step and � is the element-wise mul-
tiplation. We argue that there may exist other forms of feature which can be expressed as a
linear transformation of the incoming data or feature map, just like the velocity and accel-
eration mentioned above. This form of features only account for local data and is extracted
using convolutional operations, as,

ot = K[1,N]�H[t+1,t+N], (3)

where K[1,N] is the temporal convolution kernel of length N and H[t,t+N] stands for a part of
the input sequence along temporal axis.

4.2 Temporal Perceptive Subnetwork
The Temporal Preceptive layer is one auto-adaptive component of the LSTM-based network
for temporal modeling. It handles time-distributed sequential data and do parametric linear
transformation to the data. For the incoming feature map WT,H which stands for a sequence
of T time steps and at each time step the feature vector is of length H. We treat the feature
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Figure 3: The Structure of The Temporal Perceptive Network. Given incoming skeleton map
or feature map WH,T representing sequence of T time steps and H spatial dimensions, we first
conduct a temporal convolution of N filters to make W

′
T,H,N . W

′
T,H,N is then concatenated

along the last axis, expanding the spatial dimension to H×N.

map as one channel. After its convolutional operation againest N filters of kernel Km,n, the
output feature map is W

′
T,H,N as there are N generated channels of N filters. These N chan-

nels are concantenated to form a feature vector of length N×H. So the output of this layer
is W

′′
T,N×H . Here we state that the feature map can also be raw incoming skeleton data.
The architecture of temporal perceptive layer is shown in Figure 3. With the input data

flow, the subnetwork is able to extract the short-term statistics automatically in temporal
field. When doing the feed-forward process of the training, the convolution kernel will con-
duct a convolution operation to several time-steps. For a given sequence [. . . ,xi−1,xi,xi+1, . . . ],
we have a kernel [k1,k2, . . . ,kN ] of length N. The output yi of the layer l can be calculated
as,

y(l)i =
N

∑
j=1

(
x(l)i−N+ j · k

(l)
j

)
. (4)

In the back-propagation phrase, for each temporal convolutional layer in TP subnetwork,
the kernel weights kl is updated with the derivatives,

∂L

∂k(l)t

=
T

∑
i=1

δ
(l+1)
i x(l)i−N+t , (5)

where L denotes the loss value in one batch of the training, t is to iterate along each dimention
of the kernel weights, and δ (l) stands for the error of the lth layer.

We visualize the learned weights of the kernels of the TP layer, shown in Figure 4. As
we initialize the weights with random values, the model is proved to have learned its weights
during training. The two sets of filters are placed in different places in the model. We can
see that each filter learns different transformation for the input data, but both Figure 4(a) and
Figure 4(b) have at least one filter with descending or increasing weight distribution (in the
middle of the color map). It shows that our model learns to extract the derivatives of joint
coordinates, which is similar to velocity. But the auto-extracted features are more general
and discriminative. It adds to the robustness and diversity of feature learning to the whole
model. We prove that our novel temporal perceptive mechanism can capture extra short-term
feature to enhance the feature learning of LSTM.
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Figure 4: Visualization of learned weights of the TP layers. Figure 4(a) is the learned weights
when the TP layer is placed after the first LSTM layer, and Figure 4(b) when the TP layer is
placed as the preprocessing unit. The color maps on the left visualize the actual weights and
the graphs on the right show the distribution of the learned weights.

4.3 End-to-End Model Structure

Figure 1 shows the overall structure of our proposed model for skeleton action recognition.
The LSTM is for sequential learning, especially for long-term modeling. The first two LSTM
layers feed the whole sequence of the hidden states as the output response to the next layer.
The output response contains temporal information which can then be detected and trans-
formed using our novel temporal perceptive layer.

In our temporal perceptive network, convolutional operations are exerted on the sequen-
tial incoming data to explore temporal correlation. Different from previous LSTM layers,
neurons in TP layers are aware of subtle dynamics of the sequence as one neuron has limited
connections. This layer has the ability to adapt to the actual distribution of the incoming
data so this kind of local exploration are for both raw joints and processed features from the
previous layer.

To assist temporal modeling, feed-forward layers, where one neuron is connected to all
neurons of the previous layer through trainable weights, are designed to model spatial struc-
ture. The weights are tuned during training to be aware of the co-occurrence of spatially
distributed joints or output responses of the previous layer.

The model is implemented using Keras [2] and Theano [24]. We train the network us-
ing the Adam [12]. To deal with sequences in different length, masking is applied to the
networks. The feed-forward layers and TP layers propagate the mask through the whole
computing graph. A SoftMax activation is placed at the final layer to support computation of
categorical cross-entropy loss.

5 Experimental Evaluation and Result

5.1 Datasets

5.1.1 NTU RGB+D Dataset (NTU)

The NTU dataset [18] is a large-scale dataset for action recognition. It contains as many as
56880 video clips in 60 categories, taken by three Microsoft Kinect sensors from different
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3-stacked LSTMProposed TPNet

Rub two hands vs. Clap hands Touch neck

Figure 5: Confusion matrix of our original 3-stacked model and our proposed TPNet. De-
tailed description of the 60 action classes can be found at the website of the NTU RGB+D
Action Recognition Dataset .

views in the indoor environment with 40 participants. Each category has an aggregated action
class. The variation of subjects and view requests for robust modeling. Here we used only
the skeleton data for training and testing. Note that we do the view normalization on the data
[18]. We evaluate our algorithm on the settings of cross-subject and cross-view, respectively,
which stands for a different view and different participants in the data collection process.

5.1.2 Kinect Interaction Dataset (SBU)

The SBU dataset is an interaction action recognition dataset with two subjects. It contains
230 sequences of 8 classes (6614 frames). We do the common subject independent 5-fold
cross validation. We smooth each joint’s position of the skeleton in the temporal domain to
reduce noise [4, 32].

5.1.3 CMU Action Dataset

We used the categorized CMU motion capture dataset, mentioned in [32]. The categorized
dataset contains 2,235 sequences of skeleton data. This dataset features a large variation of
the length of the sequence, from 22 to 2378. We evaluate our proposed model using the
3-fold cross validation on the full dataset.

5.2 Ablation Analysis
Table 1 shows our experiments of the cross-subject validation on NTU dataset. For baseline
model, we use the 3-stacked LSTM network with fully connected feed-forward layers in
between. Number of neurons for the LSTM layers are 100×2, 110×2 and 200×2 where×2
means the bidirectional setting. The number of neurons for feed-forward layers are 100 and
110, corresponding to those of the LSTM layers. This baseline model achieves promising
basic results, and our proposed method improves the accuracy. For TPNet input setting,
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Table 1: Different settings in our experiments for cross-subject validation on NTU dataset.
For TPNet input setting, we place the TP layer right after the input of the model. For TPNet
feature setting, the TP layer is placed right after the first bidirectional LSTM layer. Our novel
temporal perceptive later can capture extra short-term feature to enhance the feature learning
of LSTM and improves accuracy.

Model Acc. (%)

Deep LSTM [18] 60.70%
STA-LSTM [20] 73.40%
Bidirectional LSTM 74.04%
TPNet input 74.86%
TPNet feature 75.33%

Table 2: Comparisons on the NTU dataset in accuracy.

Model Acc. (%)(CS) Acc.(%)(CV)

Dynamic Skeletons [10] 60.2% 65.2%
HBRNN [4] 59.1% 64.0%
Part-aware LSTM [18] 62.9% 70.3%
Deep LSTM [18] 60.7% 67.3%
ST-LSTM (Tree Traversal) + Trust Gate [15] 69.2% 77.7%
STA-LSTM [20] 73.4% 81.2%
Our Proposed Model 75.3% 84.0%

we place the TP layer right after the input of the model. It is to treat the TP layer as the
preprocessing element of the whole network. We set the length of the temporal convolution
kernel to be 5, which is a moderate length for the incoming frame rate. After the processing,
the original dimension of 150 for the input data will be expanded to 450 as we set up 3
filters for the convolution. For TPNet feature setting, the TP layer is placed right after the
first bidirectional LSTM layer which produces the whole sequence of the time-distributed
feature. The output dimension of the first LSTM layer is 200 and it is expanded to 600 with
3 filters. As we can see from the results, temporal modeling on slightly more abstract feature
performs better than the preprocessing-style temporal modeling.

To further examine what leads to the improvement of accuracy, we visualize the con-
fusion matrix of our original 3-stacked model and our proposed TPNet respectively. As
is shown in Figure 5, the proposed model can better discriminate actions with subtle extra-
short-term, like rubbing two hands and clapping hands. Note that we follow the definition of
action classes in the descriptions of the NTU RGB+D dataset1 . With the proposed temporal
convolution, our TPNet can better model short-term temporal dynamics without introducing
much parameters and bring performance improvement.

5.3 Comparison with State-of-the-Art
We compare several existing methods for skeleton-based action recognition on the three
datasets. On SBU and CMU datasets, whose scale is relatively small, we set the initial
learning rate of Adam optimizer to 0.0001 and we set a batch size of 8 and 32. For SBU

1https://github.com/shahroudy/NTURGB-D
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Table 3: Comparisons on the SBU dataset in accuracy.

Model Acc. (%)

HBRNN-L [4] 80.4 %
Co-occurance RNN [32] 90.4 %
STA-LSTM [20] 91.5 %
ST-LSTM (Tree Traversal) + Trust Gate [15] 93.3 %
Our Proposed Model 100.0%

Table 4: Comparisons on the CMU dataset in accuracy.

Model Acc. (%)

HBRNN-L [4] 75.02 %
Co-occurance RNN [32] 81.04 %
Our Proposed Model 99.47%

and CMU dataset, our proposed method reaches extraordinary high accuracy, proving the
robustness of our model. On NTU dataset, we evaluate our model on both cross-subject and
cross-view validations. We set the initial learning rate of Adam optimizer to 0.01 and use a
batch size of 256. We achieve high accuracy of predition on both testing settings.

6 Conclusion

In this paper, we discuss our proposed model for automatically extracting the local temporal
feature from skeleton data to improve the accuracy in large-scale action recognition. By
introducing the novel TPNet structure, the model achieves state-of-the-art performance in
large-scale action recognition challenge. Experimental results and visualization show that
the convolutional kernels are tuned to extract local temporal statistics to enhance feature
extraction of existing LSTM models.
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