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Abstract

Predicting continuous facial emotions is essential to many applications in human-
computer interaction. In this paper, we focus on predicting the two dimensional emo-
tions: valence and arousal, to interpret the dynamically yet subtly changed facial emo-
tions. We propose an Attribute-based Siamese Temporal Network (AST-Net), which
includes a discrete emotion CNN model and a Stacked-LSTM, to incorporate both the
spatial facial attributes and the long-term dynamics into the prediction. The discrete emo-
tion CNN model aims to extract attribute-related but pose- and identity-invariant features;
and the Stacked-LSTM is used to characterize the dynamic dependency along the tem-
poral domain. Furthermore, in order to stabilize the training procedure and also to derive
a smoother and reliable long-term prediction, we propose to jointly learn the model from
two temporally-shifted videos under the Siamese network architecture. Experimental re-
sults on AVEC2012 dataset show that the proposed AST-Net not only processes in real
time (40.1 frames per second) but also achieves the state-of-the-art performance even
when using the vision modality alone.

1 Introduction
Emotion recognition from human faces is an active research area and plays a vital role in
many applications. Especially, because human faces are considered as important social sig-
nals in human communication, a long-term prediction of emotions will benefit various ap-
plications involving human-computer interaction, such as health care and driver assistance
systems. Existing methods on automatic facial emotion recognition can be classified into two
categories. One is discrete emotion recognition, which usually models the recognition of six
or seven universal expressions (such as anger, contempt, disgust, fear, happiness, sadness,
and surprise) as a classification problem. Datasets such as Cohn-Kanade [14, 31] and MMI
[21, 33] are popularly used to evaluate the performance of discreet emotion recognition. In
these datasets, the subjects are asked to pose a specific discrete emotion [14, 21, 31, 33], and
each sequence usually has one peak frame and shares similar variation (e.g., neural-to-peak
followed by peak-to-neural) along the time domain. The other category of emotion recog-
nition is to analyze the four dimensional emotions, including Valence, Arousal, Expectation
and Power. In this paper, we focus on predicting the two widely used dimensions: valence
and arousal, where valence measures the degree of emotion toward positive or negative state,

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Lucey, Cohn, Kanade, Saragih, Ambadar, and Matthews} 2010

Citation
Citation
{Tian, Kanade, and Cohn} 2001

Citation
Citation
{Pantic, Valstar, Rademaker, and Maat} 2005

Citation
Citation
{Valstar and Pantic} 2010

Citation
Citation
{Lucey, Cohn, Kanade, Saragih, Ambadar, and Matthews} 2010

Citation
Citation
{Pantic, Valstar, Rademaker, and Maat} 2005

Citation
Citation
{Tian, Kanade, and Cohn} 2001

Citation
Citation
{Valstar and Pantic} 2010



2 S. H. WANG, C. T. HSU: AST-NET FOR REAL-TIME EMOTION RECOGNITION

and arousal measures the degree of emotional stimulation. We conduct our proposed method
on two dimensional emotion datasets AVEC2012 [28] and RECOLA [24, 25]. AVEC2012
dataset [28] was collected by recording the conversations between humans and artificially
intelligent agents. This recording scenario is called Sensitive Artificial Listener (SAL) tech-
nique [15] and can stimulate richer and natural emotion changes of humans through the
conversations. The other dataset, RECOLA [24, 25], was collected by recording a num-
ber of participants collaboratively completing a task. In comparison with discreet emotion
datasets, dimensional emotion datasets contain more subtle, complex and long-term affective
behavior and can better reflect spontaneous human emotions.

Nowadays, even though discrete emotion recognition has achieved very good perfor-
mance, prediction of dimensional emotions is still far from satisfactory. One of the major
challenges comes from the insufficient training data as well as the unreliable labels in the
datasets. For example, the training set of AVEC2012 dataset [28] contains only 400k frames
of seven subjects, and has very few frames labeled with strong numerical values. Hence, it is
extremely difficult to learn a regression model from the small-scaled data without suffering
the over-fitting problem. As to the reliability of labels, because the dimensional emotions
are labeled in real values, it is by no means easy for a single marker to provide consistent la-
bels, let alone reach a consensus with other markers. Furthermore, the issue of time-delayed
label, which results from the temporal delay between the video frame and its labels, also
raises serious concerns when training the prediction model. In [19], the authors proposed to
estimate the delay probability by assuming that those features which are more relevant to the
prediction should be more correlated to the undelayed labels; once determining the average
delay, they shifted all the labels with this constant delay. However, because different markers
may induce different delays at different instants, it seems impractical to shift all the labels
with a constant delay.

To tackle the above-mentioned difficulties, our goal is to build a temporal prediction
model and to deal with the insufficient training data, unreliable and non-constant time-
delayed labels. Instead of determining the label delay as in [19], we propose to learn a tempo-
ral model by characterizing the dependency between predictions of consecutive frames. As
to the issue of insufficient training data, we propose to learn an attribute-related feature repre-
sentation by leveraging the rich information in existing discrete emotion datasets. Moreover,
because there exist various facial variations that are unrelated to the emotional changes (e.g.
individual characteristics, ethnic, illumination changes, and poses), the learned representa-
tion should capture the emotional attributes but be invariant to other irrelevant variations.
Instead of learning appearance and shape features [1, 4, 19, 20, 27, 30], we propose to learn
the feature extractor by training on a discrete emotion dataset that contains different subjects
with ethnic and posture variations. Note that, although recent methods [1, 19, 20, 27, 30]
usually fuse predictions of multiple modality, e.g. vision, audio and text, to achieve better
performance, this paper does not focus on model fusion techniques but instead aims to inves-
tigate a vision-only model which can efficiently predict an accurate and temporally smooth
result.

To sum up, we propose a dimensional emotion prediction method via an Attribute-based
Siamese Temporal Network (AST-Net). AST-Net consists of three major parts. The first one
is to extract Attribute-related emotional features using a discrete emotional CNN model. The
second one is to learn the temporal dependency between frames using the Stacked-LSTM.
Finally, we use the Siamese Network to include the relationship between two temporally
shifted sequences by minimizing a new loss function.

Our contributions are summarized as follows:
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• We propose to learn the feature representation from the discrete emotion dataset so as
to capture the emotion related attributes and to circumvent the limitations of AVEC2012
dataset.
• Through the Stacked-LSTM, we reduce the impact of short-term label-delay by refer-

ring to the long-term temporal information.
• With the twin networks in the Siamese network, we propose a new loss function to

stabilize the training procedure and also to derive a much smoother and reliable long-
term prediction.
• The proposed AST-Net not only processes in real time but also achieves the state-of-

the-art performance even when only using the vision modality.

2 Related Work
Representation of facial appearance and its subtle change is crucial to spontaneous and di-
mensional emotion recognition. The idea of learning spatio-temporal features have been
popularly studied in video recognition. A number of research has achieved great success in
video recognition [6, 7, 11, 13, 17, 29, 32] based on deep learning techniques. In [11, 32], 3D
spatio-temporal filters are used to learn the spatio-temporal features; and in [13, 17], various
temporal sampling and pooling methods are studied to combine information from different
temporal durations. However, because of the large amount of parameters, it is very difficult
to learn the 3D filters from longer video clips. As to temporal pooling, even though the slow
fusion model in [13] can preserve more global temporal information, it is still insufficient
to capture the subtle changes in time domain. In [29, 34], two-stream architecture has been
used to fuse spatio-temporal information for action recognition. Nevertheless, unlike general
actions, spontaneous emotions often contain subtle movements. We need a better strategy to
characterize the locally and subtly moved facial appearance.

On the other hand, other methods attempt to capture the temporal information through
temporal models. For example, the models, e.g., TDNN, HMM, CCRF, have been used
to learn the temporal relationships in [1, 16, 20]. In addition, Long Short Term Memory
(LSTM) networks [9], which is one type of recurrent neural network with the capability of
modeling long-range temporal relationships, has been successfully adopted in video recog-
nition [6, 10]. Motivated by the success of LSTM, we will adopt the Stacked LSTM in the
proposed model.

3 Proposed Method
Figure 1 shows the flowchart of the Attribute-based Siamese Temporal Network. We first
off-line train a CNN model on a discrete emotion dataset so as to better exploit the much
larger data and their more reliable discrete labels. Next, we use the CNN model to extract a
feature vector for each frame. After obtaining the features of each frame, we use the Stacked-
LSTM to learn the temporal dependency along the time domain. Because the training data
in dimensional emotion dataset is of very small scale and with unreliable labels, even with
Stacked-LSTM, we often obtain very diverse and noisy predictions along a short period.
We thus take advantage of the Siamese network architecture and propose to involve two
temporally shifted videos into the learning stage. Finally, we combine the predictions of the
two videos and define a new loss function to derive the final prediction.

3.1 Pre-Processing
Before learning the models, we first detect and crop face regions from input videos, and
then align all the faces using the locations of eyes. Next, in order to learn the long-term
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Figure 1: AST-Net: An Attribute-based Siamese Temporal Network.

temporal information, we construct a number of video clips of fixed length (i.e., N = 50
frames in our experiments) by sampling the input videos every 10 frames (i.e., ∆t = 10 in
Fig. 1). Therefore, each video clip of 50 frames covers the temporal duration of 500 frames
in the original video. From our experiments, training on the sampled video clips indeed
improves the overall performance than training on the original videos. The reason is that
there is usually very little emotional change over a short period, and the model can hardly
learn much temporal information from video clips covering a very short duration.

3.2 Discrete emotion CNN model

We use VGG-16 as our CNN model, and pre-train the model on VGG-Deepface [22]. We
then fine-tune the CNN model on the discrete emotion dataset, Fer2013 [8]. As noted be-
fore, in comparison with AVEC2012 dataset and its real-valued labels, the discrete emotion
dataset is much easier to collect and to assign its discrete labels. Therefore, the CNN model
is more likely to converge without suffering the over-fitting problem when training on the
discrete emotion dataset. In addition, although discrete emotion and dimensional emotion
indicate different characteristics, the six discrete labels in Fer2013 are not irrelevant to the
continuous emotion dimensions. From the theory of psychology [23], e.g., "Each emotion
can be understood as a linear combination of these two dimensions, or as varying degrees
of both valence and arousal.", we argue that, both the discrete and dimensional emotions
are implicitly correlated and do rely on some common but latent facial attributes. Thus, we
can view the features extracted from the fully connected layer (fc6) of the CNN model as
the attribute-related features, which capture the degree of tendency toward a certain discrete
expression, e.g., the degree of anger or smile.

Furthermore, we observe that, in the AVEC2012 dataset, facial appearances reflect not
only the emotional changes but also individual characteristics, ethnic, and environmental
variations (e.g., viewpoint changes, illumination changes, and occlusions). If we simply use
the AVEC2012 dataset to train the CNN model, the learned feature may mostly capture the
noisy variations unrelated to the emotional changes.
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3.3 Stacked-LSTM
Next, after extracting the features of each video clip, we use a stack of LSTM to learn
the dynamic and long-short term temporal dependency between frames. With the Stacked-
LSTM, we also alleviate the problem of time-delayed labels; because when referring to
long-term trend, we can largely reduce the impact caused by the short-time delay.

3.4 Siamese Temporal Network and Loss Function
Finally, we observe that the predictions of Stacked-LSTM are still very diverse in a short-
term period. In order to learn a smoother prediction along the temporal domain, we propose
to use the Siamese network to jointly learn from two temporally-shifted clips, whose time
stamps are [Tt ,Tt+∆t , ...,Tt+∆t×N ] and [Tt+1,T(t+1)+∆t , ...,T(t+1)+∆t×N ], respectively. (∆t = 10
in the experimental setting)

The Siamese network consists of two identical networks; each network processes an
input sequence, and the two networks are then joined by a loss function to aggregate their
outputs. We define the loss function as follows,

Loss = Prediction loss+λ ×Siamese loss. (1)

Prediction loss. The prediction loss is a linear combination of 4 loss terms, defined by:

Prediction loss = label loss+w1× trend loss+w2× local loss+w3×global loss. (2)

1. The label loss term measures the Euclidean distance between the predictions and the
ground truth labels of all the frames in the video clip.

2. The trend loss term is designed to measure the overall trend of emotional changes.
Even though the exact values of ground truth labels are highly subjective, these la-
bels usually reach a consensus on how the dimensional values ascend (or descend)
in the temporal domain. We thus measure the distance of the label changes between
adjacently sampled frames to constrain the overall trend of the prediction.

trend loss =
1

2N

N

∑
i=1
‖ĝi− ŷi‖2, N : the number o f f rames in a video clip,

where ĝi = gti−gti−∆t , ŷi = yi− yi−∆t ,

gt is the ground truth label and y is the prediction

(3)

3. The local loss term is used to constrain the intensity changes in a local interval. We
divide the video clip into M intervals and define the term by:

local loss =
1

2M

M

∑
k=1
‖ĝk− ŷk‖2, M : the number o f intervals,

where ĝk = max
i∈intervalk

gti− min
i∈intervalk

gti, and ŷk = max
i∈intervalk

yi− min
i∈intervalk

yi

(4)

4. In addition to the local loss, we design the global loss to further constrain the range
of prediction of the whole chip. Because the exact values of dimensional labels are
difficult to predict, our earlier experiments show that the prediction tends to fall into a
small range. We thus define this term to minimize the distance of global ranges by:

global loss = ‖ĝ− ŷ‖2,

where ĝ = maxgt−mingt, and ŷ = maxy−miny
(5)
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Siamese loss. The Siamese loss term is to minimize the distance between predictions of the
two clips. With this term, we expect to derive a temporally smoothing and reliable prediction.

Siamese loss =
1

2N

N

∑
i=1
‖ĝi− ŷi‖2, N : the number o f f rames,

where ĝi = gti−gti−1, and ŷi = yi− yi−1

(6)

4 Experiments

4.1 Datasets
AVEC2012 Dataset. The goal of the 2nd Audio-Visual Emotion recognition Challenge
and Workshop (AVEC 2012) is to recognize four continuously valued affective dimensions:
arousal, expectancy, power, and valence. This challenge uses the SEMAINE corpus as the
source of data, which consists of a large number of emotional interactions between human
participants and sensitive artificial listener agents. The dataset contains 95 video clips, which
are split into 31 training sessions, 32 development sessions, and 32 test sessions. Each video
is recorded at frame rate of 49.479 frames/s and with resolution of 780x580 pixels. Although
the dataset also contains audio modality, we only use the visual modality to conduct experi-
ment and evaluate the performance. More details about the dataset can be found in [28].
Fer2013 Dataset. This dataset contains over 20k subjects with various ethnics and poses.
There are 35887 images, including 4953 "Anger" images, 547 "Disgust" images, 5121 "Fear"
images, 8989 "Happiness" images, 6077 "Sadness" images, 4002 "Surprise" images, and
6198 "Neutral" images. The resolution of each image is 48x48.
RECOLA Dataset. The RECOLA database focuses on the research of spontaneous collab-
orative and affective interactions. This dataset consists of multimodal data, i.e. audio, visual,
and physiological (electrocardiogram, and electrodermal activity) recordings of online inter-
actions between participants, who were solving a task in collaboration [24, 25]. We use 9
training videos for training and 9 development videos for testing. Each video is recorded at
frame rate of 25 frames/s and with resolution of 1280x720 pixels. Although this dataset con-
tains audio and biosignal modality, we only use the visual modality to conduct experiment
and evaluate the performance. Compared to AVEC2012 dataset, the RECOLA dataset is of
much smaller scale and is more difficult for learning and analyzing. More details about the
dataset can be found in [24, 25].

4.2 Evaluation Scheme
Similar to previous work [16, 19], we use the Correlation Coefficient (CC) to evaluate the
performance. CC has been popularly used to measure the trend of emotional changes and
is considered as more meaningful than the error measurement on prediction values. In the
following experiments, we will show the Max CC, Min CC and Mean CC of the testing
videos and will compare with other state-of-the-art methods using Mean CC.

4.3 Implementation Details
In the training stage, we use the training set of AVEC2012 and RECOLA to train their indi-
vidual temporal model. During the testing stage, we evaluate the performance of AVEC2012
dataset on its development set and test set, and of RECOLA dataset on its development set.
Because the size of face images in the pre-trained model VGG-Deepface is 224 x 224, we
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Loss Function Max CC / Min CC Mean CC
La Loss 0.7903/0.1516 0.4241
T Loss 0.7190/0.0964 0.3965
La + T Loss 0.8182/0.1779 0.4757
La + S Loss 0.8098/0.2121 0.4282
La + T + S Loss 0.7939/0.2253 0.4593
La + T + G Loss 0.7616/0.2436 0.4886
La + T + Lo Loss 0.8157/0.1802 0.4968
La + Lo + G Loss 0.8191/0.1325 0.3843
La + T + Lo + G Loss 0.7931/0.1864 0.5047
La + T + Lo + G + S Loss 0.8789/0.2337 0.5874

Table 1: Evaluation of loss function on AVEC2012 Valence Development Set (La: Label
Loss; T: Trend Loss; Lo: Local Loss; G: Global Loss; S: Siamese Loss)

Figure 2: Predictions of valence in Video005 ((a)-(c)) and in Video001((d)-(e)) of
AVEC2012 development set (x-axis is the frame number; y-axis is the prediction value).
We use the proposed loss function in (a)(c); La+T+G+S loss in (b); and La+T+Lo+S loss in
(e). (c) and (f) are the corresponding ground-truth labels.

resize all the face images in FER2013, AVEC2012 and RECOLA into 224 x 224 before
fine-tuning and feature extraction. The dimension of extracted features from fc6 of the CNN
model is 4096; the number of input frames to the Stacked-LSTM is 50.
Stacked-LSTM. We have tested with different numbers of layers and memory cells, and
empirically determine to use two stacked LSTM layers, each with 50 and 40 memory cells.
Loss Function. Different error terms in the loss function have different ranges. For example,
the error range of label loss is much larger than that of Siamese loss. Therefore, we need to
assign different weights to balance the loss terms. In the experiments, we set the weights in
equations 1 and 2 as w1 = w2 = w3 = 10, and λ = 1000. Note that, the reason of different
weight setting is because the magnitudes of errors in prediction loss and siamese loss are in
very different range (e.g., the prediction loss is about 10−1, siamese loss is around 10−4).

4.4 Results
Evaluation of Loss Function. Table 1 shows the performance using different combinations
of loss terms in the loss function.

We first investigate the local (Lo) and global (G) loss terms. In Table 1, from the results
of La+T+G Loss and La+T+Lo Loss, the local loss better improves the performance than
the global loss, because the global loss is designed to constrain the global range but cannot
guarantee to minimize the local loss. Nevertheless, both local and global terms are critical
to the overall performance. In Figure 2, we show the results when only removing either Lo
or G loss from the loss function. The results show that, without either of them, the overall
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Figure 3: Predictions of valence on Video001 in AVEC2012 development set using (a) the
proposed loss function; (b) La+T+S loss; and (c) La+T loss. (d) is the ground-truth label.
(x-axis is the frame number; y-axis is the prediction value)

Figure 4: Predictions of valence in: (a)-(d) video001; (e)-(h) video010; (i)-(l) video022;
(m)-(p) video013. In each video, we show the results of La+T+Lo+G loss, the proposed loss
function, the median filtered prediction, and the ground truth labels, respectively. (x-axis is
the frame number; y-axis is the prediction value)

predictions fail to capture the emotional changes in either short or long-term duration.
Next, when we include only label (La) or trend (T) loss in the loss function, the per-

formance is poorer than combining these two terms (La+T). However, once we include the
Siamese loss, i.e., (La+T+S), we have a smoother prediction but poorer CC performance.
One possible reason is that, when enforcing a smoother prediction, we may also compromise
the capability of predicting subtle changes in a very short duration (as shown in Fig.3 (b) and
(c)). Therefore, in the proposed loss function, we include the local (Lo) and global (G) loss
terms to simultaneously preserve the short-term and global emotional changes. As shown
in Fig.3 (a), including Lo and G not only results in a smoother predictions but also increase
the CC performance. More visualization results are given in Fig.4, where we only conduct
median filtering to better visualize the predictions and still measure the performance using
the original predictions. Fig.6 shows the statistics of valence prediction of all the videos in
the development set. The results verify that the proposed loss function not only achieves the
highest mean CC but also performs the best for most of the videos (for example, over 70 %
of videos have CC > 0.5).

Comparisons. Table 2 and Table 3 show the comparisons of our method with existing
methods on AVEC2012 Development Set and Test Set, respectively. Our method achieves
the state-of-the-art performance in both sets. Note that, most existing work usually achieves
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Method Mean CC
Arousal Valence Average

Stepwise HMM [20] 0.3964 0.2348 0.3156
Fuzzy System [30] 0.52 0.47 0.495
Dynamic Cues [19] 0.644 0.350 0.497

Ours 0.5870 0.5874 0.5872

Table 2: Comparisons with existing methods on AVEC2012 Development Set.

Method Mean CC
Arousal Valence Average

Stepwise HMM [20] 0.3248 0.1825 0.25365
Correlated Spaces [18] 0.46 0.2 0.33

CCRF [1] 0.341 0.326 0.3335
TDNN [16] 0.444 0.308 0.376

Baysian Fusion [27] 0.48 0.35 0.415
Fuzzy System [30] 0.42 0.42 0.42
Dynamic Cues [19] 0.61 0.341 0.4755

3D Model [4] 0.564 0.454 0.509
Ours 0.5442 0.5362 0.5403

Table 3: Comparisons with existing methods on AVEC2012 Test Set.

better performance on arousal prediction than on valence prediction. Especially, because
audio modality is crucial to arousal prediction, inclusion of audio modality often favors the
arousal prediction over the valence prediction. For example, Dynamic Cues [19], which
fused vision and audio models in the method, perform slightly better on arousal than ours.
Nevertheless, in terms of average performance, AST-Net outperforms these methods even
using only the vision model. Moreover, the proposed model can process the test videos in
real time (with frame rate 41 frames/s) and also achieve good performance even when the
testing videos contain large pose variations (Fig. 5). We believe the pose-invariant pre-
dictions may attribute to two reasons. One is that the FER2013 dataset contains over 20k
subjects with different poses and ethnics; and the other is that the Stacked-LSTM refers to
longer duration and is less sensitive to short-term noisy features due to pose variations.

Table 4 shows the comparisons of our method with existing methods (using vision modal-
ity alone) on the RECOLA Development Set. Because the goal of RECOLA dataset is on
research of collaborative and affective interactions, the subjects did not always look at the
camera with any emotional change. Furthermore, the RECOLA dataset consists of multi-
modal information (including audio, visual, and physiological signal). Because the audio
and biosignals features are more related to the emotional changes in this dataset, (e.g. cc
= 0.788 on Arousal when applying to audio modality alone in [25]), most existing methods
focus on the fusion methods to improve the performance. Therefore, we achieve merely
comparable performance with existing methods on the RECOLA dataset.

5 Conclusion
We proposed an Attribute-based Siamese Temporal Network (AST-Net), which includes a
discrete emotion CNN model and a Stacked-LSTM, to incorporate the latent facial attributes
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Figure 5: Video021 in AVEC2012 development set. (x-axis is the frame number; y-axis is
the prediction value) (a) and (b): The prediction of valence before and after median filtering;
(c): Label of valence; and (d): Some sample frames.

Method Mean CC
Arousal Valence Average

AVEC 2015 baseline(apperance) [26] 0.183 0.358 0.2705
AVEC 2015 baseline(geometric) [26] 0.361 0.423 0.392

ETS System(apperance) [2] 0.173 0.263 0.218
ETS System(geometric) [2] 0.103 0.389 0.246

LSTM-RNN(LGBP-TOP) [3] 0.535 0.463 0.499
Multimodal-RNN(apperance) [5] 0.571 0.496 0.5335
Multimodal-RNN(geometric) [5] 0.471 0.530 0.5005

Ensemble(apperance) [12] 0.313 0.313 0.313
Ensemble(geometric) [12] 0.172 0.401 0.2865

NN fusion system [25] 0.427 0.431 0.429
Ours 0.4783 0.4445 0.4614

Table 4: Comparisons with existing methods on RECOLA Development Set.

and the long-term dynamics into the prediction. With the Siamese Network, we imposed
a new loss function to stabilize the training procedure and also to derive a much smoother
and reliable long-term prediction. The discrete emotion CNN model is trained to extract
attribute-related emotion features which are also invariant to other unrelated factors. The
Stacked-LSTM effectively characterizes the temporal dependency between these attribute-
related features. Experiment results show that AST-Net consistently outperforms existing
approaches and achieve the state-of-the-art performance in real-time even only using the
vision modality. In the future, we will test AST-Net on more data and will also test on fusing
multiple modalities to further improve the performance.

Figure 6: The statistics of valence predictions of all videos in AVEC2012 development set.
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