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Abstract

Recently there has been remarkable success in pushing the state of the art in salient
object detection. Most of the improvements are driven by employing end-to-end deeper
feed-forward networks. However, in many cases precisely detecting salient regions re-
quires representation of fine details. Combining high-level and low-level features us-
ing skip connections is a strategy that has been proposed, but sometimes fails to se-
lect the right contextual features. To overcome this limitation, we propose an end-to-
end encoder-decoder network that employs recurrent refinement to generate a saliency
map in a coarse-to-fine fashion by incorporating finer details in the detection framework.
The proposed approach makes use of refinement units within each stage of the decoder
that are responsible for refining the saliency map produced by earlier layers by learning
context-aware features. Experimental results on several challenging saliency detection
benchmarks validate the effectiveness of our proposed architecture providing a signifi-
cant improvement over current state-of-the-art methods.

1 Introduction
Salient object detection aims to precisely detect objects that capture human attention in im-
ages, or that are the main subject of the image. In recent years, there have been significant
advances in developing models for salient object detection that have achieved a great deal
of success, motivated by a wide rage of applications (e.g. semantic segmentation, object
detection, image summarization, content-aware image cropping and others).

Traditional saliency detection methods such as DRFI [9], DSR [17], HS [31] mostly
focus on relatively general cues like contrast, color, texture that tend to be diagnostic of
what is salient to evaluate the distinctiveness of each image region or pixel considering local
and global contextual information. In most cases, this class of methods tries to highlight
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Image GT Initial Saliency Map Refined Saliency Map After CRF
Figure 1: An example of applying context-aware refinement network to an initial saliency
map produced by the encoder network. Compared to initial saliency map, the refined saliency
map has significantly sharper edges and better spatial information.

object boundaries or interiors uniformly but in many cases fails to preserve object details.
Moreover, some of the classic approaches are often unable to detect salient objects with large
sizes, and targets of a photograph that lie on complex textures and backgrounds.

Recent success of Convolutional Neural Networks (CNN) in a variety of computer vision
tasks (e.g. image classification [3, 26], semantic segmentation [1, 21], edge detection [29])
has attracted wide attention to these methods, and has motivated efforts towards using Fully
Convolutional Networks (FCN) for the salient object detection [4, 12, 14, 19, 28, 33] task.
One popular solution is the use of an encoder-decoder based approach that applies stage-wise
refinement to capture finer details resident in early convolutional layers through skip connec-
tions at the decoding stage. However, simply integrating features of higher spatial dimension
within the refinement (decoding) process does not always achieve significant improvements.
Inspired by the success of encoder-decoder networks in pixel-wise labeling tasks, we ap-
ply a network with this structure to detect salient regions in an end-to-end fashion. This
takes the form of our proposed context-aware refinement network wherein the decoder part
takes coarse saliency maps generated by the encoder network and hierarchically refines the
saliency map to produce a final output that matches the resolution of the input. To overcome
the limitations with existing approaches, we propose a refinement unit that takes full advan-
tage of the high spatial dimension features from earlier layers in the refinement process. As
demonstrated in Fig. 1, we observe that high-level features can better locate the salient object
and low-level features capture rich spatial information. With that being said, we believe that
integrating high-level features with low-level features is useful in the salient object detection
task. In this paper, we propose a new approach for salient object detection inspired by the
previous approaches. Our contributions can be summarized as follows:

• We propose a novel end-to-end encoder-decoder based salient object detection model
that can simultaneously predict saliency maps at different resolutions.

• We propose a context-aware refinement network, which serves as the decoder network,
and can hierarchically and progressively refine saliency maps to recover fine details of
the image by integrating local and global contextual information through gate units,
global convolution units and boundary refinement units. Moreover, we combine the
prior map with the final prediction map. Furthermore, our model is general enough that
it can be easily applied to other pixel-wise labeling tasks (e.g. semantic segmentation,
scene labeling, depth estimation etc.).

• Experimental results on four benchmark datasets and comparisons with recent state-
of-the-art approaches demonstrate the effectiveness and superiority of our approach
on the salient object detection task.
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2 Related Work
Over the past few years, a large number of salient object detection approaches have been
developed. In general, those approaches can be classified into two main categories, i.e., either
contrast-based methods that use hand-crafted features or methods that apply deep learning
to learn both features and the classifier.

Contrast based methods select and combine important features to detect objects that at-
tract attention. Some of these methods use local, low-level features such as multi-scale color,
intensity and orientation filters [7], mid-level visual cues [30], or the contrast of multiple fea-
ture distributions [10]. However, other methods use global features like region descriptors
[9], global region contrast [2], or a combination of features (i.e. multi-scale contrast, center
surround histograms, and color spatial distributions) [20].

More recently, CNN have shown superior performance compared to these traditional
methods on commonly used benchmarks. CNN based models have raised the bar on the
quality of predictions possible in multiple fields of computer vision, including salient ob-
ject detection. Recently, many salient object detection methods adopt CNN based models
due to the ability to extract more representative and complex high-level features. Li and Yu
[13] proposed a deep neural network that extracts features from three differently scaled input
maps and then aggregates them into one saliency map. Wang et al. [27] integrated both lo-
cal estimation and global search using two sequential CNN to predict saliency maps. Local
saliency information (i.e. the saliency value for each pixel) is extracted by the first CNN
and then forwarded along with the global contrast and geometric information to the second
CNN for further refinement. Zhao et al. [33] proposed a multi-context CNN that obtains
and integrates global and local context information to produce saliency maps. Liu and Han
[19] tackled the salient object detection problem in a global to local (coarse to fine) man-
ner. Their architecture follows the end-to-end encoder-decoder approach where the encoder
learns multiple global structured saliency cues and their optimal combination to produce
a coarse saliency map. Then, another hierarchical recurrent convolutional neural network
refines the coarse saliency map stage-by-stage by integrating local contextual information.
Li and Yu [14] proposed an end-to-end deep contrast network with two streams to enhance
salient object boundary detection. They combine a pixel-level fully convolutional stream
that produces a saliency map with pixel-level accuracy and a segment-wise spatial pooling
stream that extracts segment-wise features. The fused saliency map is finally refined with
a fully connected CRF model. Wang et al. [28] proposed a recurrent fully convolutional
network for saliency detection. In the first time step, they use the potential salient regions in
the input image as a prior knowledge of possibly salient regions in order to predict an initial
saliency map. This in turn serves as the saliency prior map for the next time step.

In contrast to above approaches, we perform a step-by-step multi-stage supervised refine-
ment for the encoded saliency map until the saliency map spatial resolution matches the input
image. This also notably includes specific mechanisms for how early feature information is
routed in making a final determination of saliency.

3 Context-Aware Refinement Network
In this section, we discuss our proposed context-aware refinement network to address the
problem of salient object detection. Then, we design a fully-convolutional feedback refine-
ment network using context-aware refinement units.
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Figure 2: An overview of the proposed salient object detection framework. The bottom-
up (encoder) network consisting of multiple layers (e.g. convolution, batch normalization,
pooling, ReLU) is integrated with the refinement network through skip connections. The
refinement network has context-aware refinement units (CRU1, CRU2,..., CRU4) that take a
bottom-up feature map and previous stage prediction map (Si) to generate subsequent stage
prediction maps (Si+1). We down-sampled the ground-truth saliency maps to incorporate
stage-wise supervision (l1, l2,..., l6) in the refinement network. GCN and BR are used in
CRUs (see Sec. 3.2 for details). Note that we also combine the final prediction map with the
saliency prior to obtain the final saliency map.

3.1 Overview
We adopt the popular encoder-decoder network architecture for salient object detection,
where a CNN initially encodes the input image to produce a coarse spatial resolution predic-
tion, and then a refinement network decodes the coarse saliency map to provide a full reso-
lution pixel-wise prediction map. Our overall salient object detection network is illustrated
in Fig. 2. We employ pre-trained ResNet-101 [3] as the encoder network, and we propose
a novel refinement network that serves as our decoder network. We extract multi-scale fea-
ture maps from different stages of the encoder. The context-aware refinement network uses
these feature maps to generate semantic score maps in each stage of the refinement network.
Similar to previous approaches [5, 19, 24], semantic score maps for lower resolutions are
upsampled through bilinear interpolation and combined with the feature maps from the en-
coder to generate a higher resolution refined saliency map. In our case, this combination
is influenced by the refinement units involved. The semantic score map generated from the
last stage of the refinement unit is treated as the final prediction map of our network. In
addition, the saliency prior map is integrated with the final prediction map as a final stage
of refinement before evaluating the loss function. In the following section, we discuss the
context-aware refinement unit and saliency prior map.
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3.2 Context-Aware Refinement Unit

The task of salient object detection requires per-pixel classification as well as correct local-
ization. Current state-of-the-art salient object detection methods [4, 19] mostly target the
design principles of the decoding process such that an initial prediction map is refined to
produce the full resolution map. However, in most cases, refinement is done across different
levels by combining convolution features from the encoder (or feature extractor) network
with decoder layers. Directly combining convolution features with the semantic score map
through concatenation or element-wise summation may have unpredictable consequences,
and has the possibility of degrading the contribution of lower depth feature maps (semantic
score maps). Hence, in only using features from the encoder network through skip connec-
tions [5, 21] there are inherent limits on spatial detail that may be recovered since the model
cannot take full advantage of the higher resolution feature maps. Therefore, following previ-
ous work [6], we integrate a multiplicative gate unit at each stage of refinement that controls
the information being passed forward to resolve ambiguity between background and salient
object classes.

Moreover, in salient object detection, the object is often biased in its position towards the
center of the image and the classifier has a view of the entire object in context only within the
deepest layers of the encoder. However, if the salient object is resized to a large scale, then
the receptive field (kernel) of the skip connections covers only a part of the object, which can
be problematic in refining missing details. In [6], all the skip connections in gate units and
refinement units use a 3×3 receptive field to generate semantic score maps.

Based on the above observations, and also drawing inspiration from [23], we design
a refinement unit that is mainly composed of a Global Convolution Network (GCN) and a
Boundary Refinement (BR) block that overcomes these drawbacks. GCN uses a combination
of 1× k+ k×1 and k×1+1× k convolutions, resulting in a k× k convolution that enables
dense connection within the k×k region (instead of directly using a k×k kernel), and thereby
helping to capture broader context. BR consists of stack of two 3×3 convolutions followed
by element-wise summation to further refine the boundary pixels. We now describe the
detailed architecture of context-aware refinement units (CRU).

The detailed architecture of the CRU is illustrated in the dotted box of Fig. 2 which has
two input paths. Our refinement units are generic and can be modified to accept an arbi-
trary number of feature maps with different resolutions. Note that, although these units are
identical, they do not share weights among them since each unit learns to recover missing
spatial information in order to resolve ambiguity during refinement stages. It is also note-
worthy that each CRU combines feature representations obtained from different levels of the
encoder network.

The first input of each refinement unit is comprised of a bottom-up feature map derived
from a multiplicative gate unit that serves a primary role of filtering out ambiguity between
background and salient objects by controlling the activation from features passed from en-
coder layers to decoder layers. The saliency map predicted from the prior stage Si serves
as the second input to the refinement unit. To that end, the first input is passed sequentially
through a global convolution unit and boundary refinement unit before being combined with
the 2x upsampled saliency map derived from the prior stage through concatenation followed
by a 1× 1 convolution across layers. The formulation of getting a bottom-up feature map
from a gate unit is described by the following equations:

vi = Tf (Ci+1), ui = Tf (Ci), Zi
f = vi�ui (1)
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where � denotes an element-wise product. Note that, Ci and Ci+1 are the feature map from
ith and (i+1)th layer in the encoder which are passed through a transformation function Tf
to map these to semantic score maps. As noted earlier, Zi

f is then fed to the refinement unit
as the first input.

In summary, the refinement unit at each stage takes the bottom-up feature Zi
f and last

stage prediction map Si as inputs and generates the next stage prediction map Si+1 through
the series of operations mentioned earlier. The operations inside each refinement unit are as
follows:

Si+1 = C1×1(ρ(φ(Zi
f ))⊕U(Si)) (2)

where C, ρ , φ , ⊕, and U denotes 1× 1 convolution, global convolution unit, boundary
refinement unit, concatenation, and 2x upsample operation respectively.

3.3 Saliency Prior Map
We also integrate a saliency prior map as an additional input to the network. We first calcu-
late the per-pixel average of ground-truth training images which serves as the saliency prior
map for the network. If pixels marked salient were uniformly distributed, this prior would
have no effect. However, salient objects tend to be near the center of the image (likely due to
compositional bias) in a manner determined by the purpose of dataset and how it was com-
posed. Taking this into consideration, it is important to model such spatial bias and we do
so by creating a prior distribution Sp that is multiplied element-wise with the final predicted
saliency map S′. We convolve the final prediction layer with a Gaussian Gσ to regularize
the predictions. Since the final prediction layer has two output channels (foreground and
background), we slice the feature map to separate them. Note that only foreground feature
slices are combined with the prior map since these contain the objectness score for each pixel
that corresponds roughly to different semantic categories. We summarize the operations as
follows:

Sp(i, j) =
1
N

N

∑
m=1

h

∑
i=1

w

∑
j=1

Sm(i, j) S′i = Si×Gσ S′′i = S′�Sp (3)

3.4 Training with Multi-stage Supervision
Inspired by [5, 11, 19], we apply multi-stage supervision in our end-to-end network. More
specifically, assume Im ∈ Rh×w×d to be a training instance with ground-truth saliency mask
Sm ∈ Rh×w. We obtain m resized ground-truth maps (R1,R2, ....,Rm) by resizing Sm. A loss
function φi (pixel-wise cross entropy loss) is defined to measure the quality of predicted
saliency map against the resized ground-truth saliency mask Ri(Sm) at different stages of the
refinement network. We can write these operations as follows:

`=
5

∑
m=1

lm lm = ξ

(
Ri,Smi

)
ξ =

1
N ∑

i
p log(xi,yi|Ii) (4)

where ξ denotes cross-entropy loss at each stage. The final loss ` is the summation of
cross-entropy losses across different stages of the refinement network. We train the network
end-to-end using back-propagation to optimize the final loss.
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4 Experiments and Results
To demonstrate the effectiveness of each component of our network architecture, and study
the performance of our proposed approach, we present results from experiments on four
salient object detection benchmark datasets and show quantitative and qualitative compar-
isons of our methods with recent state-of-the-art methods. In the following section, we
firstly describe the implementation specific details. Then, we report performance on several
saliency detection benchmarks followed by analysis of different variants of our approach.

4.1 Implementation Details
Our network is implemented based on the publicly available Caffe library [8]. We use a
single GTX Titan X GPU for both training and testing. Inspired by [1], we use the “poly”
learning rate policy. Taking training efficiency into consideration, the mini-batch size is
set to 1, and loss is updated after every 10 iterations (i.e. each image is used 10 times for
training). We train the network using stochastic gradient descent with momentum of 0.9, and
weight decay of 0.0005. The total number of iterations is set to 20k. The weights of all the
newly added convolution layers in the refinement network are randomly initialized from a
standard normal distribution. Since we use the pre-trained ResNet-101 model for initializing
the encoder part of our network, we normalize the data using the mean and standard deviation
from VGG-16. We use pixel-wise cross entropy loss to optimize the network. As commonly
done in the training procedure (due to hardware constraints), we perform random cropping
of the images. During training, crop size is set to 321×321. Since all the proposed modules
in our network can handle input images of different sizes, we test our network with the
full resolution image. To show the effectiveness of our method and the merit of individual
components, we carry out comprehensive experiments including ablation studies. We report
performance for the following variants of our model including the baseline:

G-FRNet: Gated Feedback Refinement Network [6] that includes the gating mechanism
prior to passing information to the refinement units. We consider G-FRNet as our base model
and report its experimental results.

CARNet: Context-Aware Feedback Refinement Network built on top of G-FRNet [6]
for salient object detection. We integrate the prior map within the training procedure.

CARNet†: This is the same as CARNet except that we add the global convolution net-
work (GCN) and boundary refinement (BR) block within the refinement process.

4.2 Datasets and Evaluation Metrics
Datasets: We follow the training protocol suggested in [19]. More specifically, we use the
MSRA-10K [25] dataset for training and evaluating our proposed method on four saliency
detection benchmark datasets, including PASCAL-S [18], ECSSD [31], HKU-IS [13], and
DUT-OMRON [32]. MSRA-10K dataset consists of 10,000 images with pixel-wise anno-
tation for salient objects. PASCAL-S dataset contains 850 images with multiple complex
objects derived from PASCAL VOC 2012 validation set that provides saliency estimates in
the [0, 1] range. As suggested by the author of this dataset, we threshold the saliency values
using a threshold of 0.5 to obtain the binary object mask. HKU-IS dataset provides 4,447
complex images with low-contrast and multiple salient objects in each image. Similarly,
DUT-OMRON is a large dataset which contains 5,168 challenging images (one or more
salient objects) with complex backgrounds.
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∗ ECSSD [31] HKU-IS [22] PASCAL-S [18] DUT-OMRON [32]
F-measure MAE F-measure MAE F-measure MAE F-measure MAE

RC [2] 0.741 0.187 0.726 0.165 0.640 0.225 - -
DSR [17] 0.737 0.173 0.735 0.140 0.646 0.204 - -
DRFI [9] 0.787 0.166 0.783 0.143 0.679 0.221 0.664 0.150
MDF [13] 0.833 0.108 0.860 0.129 0.764 0.145 0.640 0.092
CHM [15] 0.722 0.195 0.728 0.158 0.631 0.222 - -
MC [33] 0.822 0.107 0.781 0.098 0.721 0.147 0.703 0.088
ELD [12] 0.865 0.981 0.844 0.071 0.767 0.121 0.719 0.091

RFCN [28] 0.898 0.097 0.895 0.079 0.827 0.118 0.747 0.095
DHSNet [19] 0.905 0.061 0.892 0.052 0.820 0.091 0.740 -

DCL [14] 0.898 0.071 0.907 0.048 0.822 0.108 0.757 0.080
DSS [4] 0.915 0.052 0.913 0.039 0.830 0.080 - -

CARNet† 0.9250 0.040 0.912 0.034 0.8341 0.086 0.7895 0.061
Table 1: Quantitative comparison (in terms of average Fβ and MAE) with state-of-the-the
methods. Best and second best scores are shown in red and blue text respectively.

Evaluation Metrics: Following previous work [19], we use four different standard metrics
to measure the performance including precision-recall (PR) curves, F-measure, mean abso-
lute error (MAE), and area under ROC curve (AUC). We calculate the precision and recall
curve by thresholding the predicted saliency map using a set of thresholds, and compare
the predicted binary map with the ground-truth map. MAE is the average pixel-wise dif-
ference between the predicted saliency map and the binary ground-truth map. We set β 2 in
F-measure to 0.3 following previous works.

4.3 Performance Comparison with State-of-the-art Methods
We compare our proposed salient object detection model with state-of-the-art methods, in-
cluding DSS [4], RFCN [28], DCL [14], DHS [19], MTDS [16], DRFI [9], LEGS [27],
MDF [13]. The first few approaches are recent deep learning methods. Initially, we com-
pare our approach with existing methods in terms of F-measure and MAE scores as shown
in Table 1. Our approach achieves the best performance for most of the datasets. Our pro-
posed approach is capable of not only detecting salient objects of different scales but also
generating precise saliency maps in challenging scenarios (see Fig. 3). Fig. 4 presents the
comparison of our method with state-of-the-art methods through PR-curves, F-measure and
AUC metrics. It is clear from Fig. 4 and Table 1 that our proposed approach outperforms the
existing methods with a reasonable margin.

4.4 Comparison with Different Variants
To demonstrate in greater detail the role of different components of our proposed network,
we report performance of different variants (Sec. 4.1) of our network in Table 2. GFRNet
is our base model, whereas CARNet is G-FRNet with spatial prior information. CARNet
performs better than GFRNet due to the fact that adding prior to the network refines expec-
tation based on interaction between spatial position and features, and thus helps providing a
more precise final prediction. To further improve the performance of CARNet, we integrate
GCN and BR within CARNet (i.e. CARNet†). Our final model CARNet† achieves the best
performance and this gain in performance can be attributed to the improvement in labeling
capability induced by GCN and BR.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 3: Visual comparison of saliency maps with state-of-the-art methods, including our
approach. (a) Input image (b) Ground truth (c) CARNet† (d) DCL (e) DHS (f) DSR (g)
DRFI (h) HS (i) HDCT (j) MC. Our approach consistently produces saliency maps closest
to the ground truth.

∗ HKU-IS [22] ECSSD [31] PASCAL-S [18] DUT-OMRON [32]
F-measure AUC F-measure AUC F-measure AUC F-measure AUC

G-FRNet [6] 0.9085 0.9635 0.9080 0.9560 0.8310 0.9116 0.7840 0.9363
CARNet 0.9109 0.9657 0.9095 0.9567 0.8320 0.9142 0.7870 0.9405
CARNet† 0.9115 0.9660 0.9250 0.9598 0.8341 0.9152 0.7895 0.9407

Table 2: Comparison of different variants of our proposed approach. Our final model
CARNet† achieves the best performance when compared to other variants of our model.

5 Conclusion

In this paper, we have introduced a novel end-to-end refinement based architecture combined
with prior information for solving the problem of salient object detection. Initially, the net-
work generates a coarse label map by detecting the salient objects from a global view, then
progressively recovers image details by integrating local context during the refinement. The
most important contribution of our work is the stage-wise saliency map refinement, which
results in precise saliency map. Experimental results demonstrate that the proposed model
achieves state-of-the-art performance on benchmark datasets in salient object detection.
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Figure 4: Comparison with state-of-the-art salient object detection methods on 3 differ-
ent datasets. For each dataset, the first row shows the precision-recall curves and second
row shows the F-measure and AUC. Our proposed approach CARNet† consistently out-
performs other methods across all the datasets. In particular, the PR-curves show that our
approach achieves significantly higher precision with higher recall, which demonstrates that
our method locates salient objects more accurately and precisely. PR curves of our method
terminate earlier than the baselines due to very high contrast (confidence) expressed in our
predictions, that always achieves recall higher than 0.5. Note that DHSNet [19] includes
the test set of DUT-OMRON in its training data. Therefore, we do not include it in the
comparison based on the DUT-OMRON dataset.
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