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Abstract

Due to the domain shift between images and videos, standard object detectors trained
on images usually do not perform well on videos. At the same time, it is difficult to di-
rectly train object detectors from video data due to the lack of labeled video datasets.
In this paper, we consider the problem of localizing objects in weakly labeled videos.
A video is weakly labeled if we know the presence/absence of an object in a video (or
each frame), but we do not know the exact spatial location. In addition to weakly la-
beled videos, we assume access to a set of fully labeled images. We incorporate domain
adaptation in our framework and adapt the information from the labeled images (source
domain) to the weakly labeled videos (target domain). Our experimental results on stan-
dard benchmark datasets demonstrate the effectiveness of our proposed approach. Our
work can be used for collecting large-scale video datasets for object detection.

1 Introduction
We consider the problem of localizing objects in weakly labeled videos. A weakly labeled
video only has the object label at the video level without the exact location of the object.
For example, if a video is labeled as “car”, we assume that each frame of the video contains
the object “car”. Our goal is to localize the car in each frame. In addition to the weakly
labeled videos (which we call target domain), we assume that we also have access to a set of
fully labeled images where the object bounding boxes are annotated (which we call source
domain). However, there is a domain shift between the images in the source and target
domains. Our goal is to use both sources of data to improve the object localization in the
target video domain. See Fig. 1 for an illustration of our problem setup.

There have been significant advances in image understanding (e.g. object detection) in
recent years. Much of the progress is enabled by the availability of large-scale annotated
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datasets, such as PASCAL [5], ImageNet [3], MS COCO [11]. Compared with the great
success in image understanding, the progress in video understanding is relatively slow. One
possible reason is the lack of annotated data in the video domain. In order to detect certain
objects in videos, people usually take the off-the-shelf object detectors trained on the image
dataset and apply the detector on each frame in the video. However, the state-of-the-art ob-
ject detectors are often trained on datasets such as PASCAL or ImageNet, where images in
those datasets are often obtained from online image websites (e.g. Flickr) and tend to have
certain characteristics (e.g. object centric, high resolution). In contrast, the image character-
istics of video frames tend to be different from the images in standard image datasets used in
computer vision. For example, video frames tend to have lower resolutions and they might
contain motion blurs. This is especially true in many real-world applications, e.g. surveil-
lance videos. Object detectors trained on standard image datasets may not generalize well
on those videos due to the domain shift between images and videos. Of course, one simple
solution is to train the object detector directly in the video domain. However, this is not yet
feasible due to the lack of large-scale annotated video datasets.

Our work is motivated by the following observation. Although it is difficult to collect
labeled video data where object bounding boxes are annotated, it is relatively easy to col-
lect weakly labeled videos, where the object label is provided at the video or frame level.
If we can successfully localize objects from such weakly labeled videos, we will have an
inexpensive way of collecting large-scale datasets in the video domain.

Our work is closely related to weakly supervised object localization. The novelty of our
work is that we combine weakly supervised object localization and domain adaptation. Our
proposed method can take advantage of both the weakly labeled videos in the target domain
and the fully labeled images in the source domain. Instead of naively fusing the images from
these two different domains, our model uses domain adaptation to account for the domain
shift between the images from these two domains.

The main contribution of this work is that we incorporate domain adaptation in weakly
supervised object localization. In this paper, we consider the fully labeled images as the
source domain and the weakly labeled videos as the target domain. Our proposed method
can exploit both sources of data and account for the domain shift between these two domains.
Our method can potentially be used in many real-world settings. For example, if we have
access to weakly labeled surveillance videos collected in a particular area, we can use our
method as a way of collecting training data for learning object detectors specifically tailored
to these surveillance videos.

2 Related Work
In this section, we review two lines of previous work that are closely related to this paper:
weakly supervised object localization and domain adaptation in object recognition.

Weakly supervised object localization [1, 2, 10, 14, 15, 19, 20, 25, 26, 27] has been an
area of active research in recent years. The goal is to develop methods to localize objects of
interest in images without requiring detailed annotation on the training data. Many of these
methods use some form of multiple instance learning. Bilen et al. [2] use latent SVM by
treating bounding boxes as latent variables. Bilen et al. [1] propose an end-to-end architec-
ture that combines object classification and detection in a single network. Teh et al. [26]
introduce an attention-based network to select a subset of object proposal and use the fea-
tures from the selected proposal to classify an image. Rochan et al. [15] use word vector
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Figure 1: Our goal is to localize objects in weakly labeled videos by taking advantage of
fully labeled images from a slightly different domain. For a particular object category (e.g.
“car”), we have a collection of fully labeled images (top left) where the object bounding
boxes are annotated. On the other hand, we have weakly labeled video data (bottom left)
where we know about the presence of the object (e.g. “car”), but we do not know the exact
location of the object in each frame of the video. Our goal is to use both sources of data to
localize the object in the videos (right) while taking into account the domain shift between
images and videos.

to determine the degree of influence of external object detector on its weakly supervised lo-
calization network. Singh et al. [18] use tracked objects in videos to simulate strong human
supervision for weakly-supervised object detection.

Domain adaptation is another line of research closely related to our work. The goal of do-
main adaptation is to transform the feature representations and models learned in one domain
(called "source domain") to work well in a different domain (called "target domain"). Sun et
al. [22] propose an SVM based domain adaptation technique using a second order statistics
called Correlation Alignment (CORAL) to minimize the discrepancy between source and
target domains. Sharma et al. [17] introduce an incremental approach based on multiple in-
stance learning (MIL) to minimize the discrepancy between different domains. Hoffman et
al. [6] propose a domain adaptation technique for semantic segmentation problem where
they have applied global and categorical alignment for transferring information from one
domain to another. Su and Maji [21] propose cross quality distillation (CQD) technique
to train recognition model. There is also work on domain adaptation between images and
videos. Tang et al. [23] propose a domain adaptation technique for object detection from
video data, where their system is trained on labeled image data and unlabeled video data.
Kalogeiton et al. [9] analyze how the domain adaptation between images and videos affect
the performance of object detection.
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Figure 2: Overview of our proposed framework. Our model can be seen as a two-stream
architecture that operates on images (source domain) and video frames (target domain). In
the image stream, since we have the ground-truth object bounding box annotations, we define
loss functions on the whole image classification and object bounding box localization. In the
video stream, we define a loss function only on the whole image classification, since the
videos are weakly labeled and we do not have ground-truth bounding box annotation of the
object. Our model also has a loss function that accounts for the domain shift of images and
video frames. It encourages the feature representations learned from these two domains to
be similar.

3 Our Approach
Our approach is based on the attention network in [26]. The attention network is proposed
for localizing objects in weakly supervised images, where the objects are only annotated at
the whole image level. In our work, we extend the attention network to leverage the fully
annotated data in the source domain (images) and the weakly supervised data in the target
domain (videos). Our model also performs domain adaptation to account for the domain
shift between images and videos.

Figure 2 shows the architecture of our proposed method. During training, our model can
be seen as a two-stream architecture, where one stream operates on the fully labeled images
in the source domain and the other stream operates on the weakly labeled video frames in
the target domain. In the first stream, we define a loss function that encourages the model
to produce correct image-level object label and object bounding boxes that are consistent
with the annotations in the source domain. In the second stream, since we do not have
ground-truth object bounding boxes, we define the loss function only on the whole image
classification on the video frames. These two streams share their model parameters. We also
incorporate a domain adaptation loss to account for the domain shift of these two different
domains.

3.1 Object Proposals and Attentions
Given an image from either the source or target domain, the first step of our approach is to
generate a shortlist of object proposals in this image. We use the edge boxes algorithm [28]
for generating the object proposals. Let K be the number of object proposals generated on
the image x. We represent each proposal xi (i = 1,2, ...,K) as a 4096-dimensional CNN
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feature vector [7].
We use a technique similar to [26] to generate an image level features from the features of

object proposals in an image. For each object proposal xi, we compute an attention score ai
indicating the probability that this object proposal contains the object of interest. We achieve
this by applying a linear mapping on xi followed by a softmax operation. Let wa denotes a
vector of parameters for the linear mapping, the attention score ai is calculated as follows:

gi = w>a xi (1a)

ai =
exp(gi)

∑
K
j=1 exp(g j)

, i = 1,2, ...,K (1b)

Next, we use the attention scores to combine the object proposals to get an image-level
feature vector z as:

z =
K

∑
i=1

aixi (2)

3.2 Image Stream
In the image stream, our network receives fully supervised image data, where the objects
in an image are annotated with their bounding boxes. We can also easily obtain the whole
image classification label from the object bounding box annotations. For example, if an
image has at least one bounding box of “car”, we consider “car” to be a positive class for the
whole image classification.

In this stream, we assume that we have a set of N images {x(n)s ,y(n)}N
n=1, where x(n)s

denotes the n-th image in the source domain and y(n) ∈ {−1,1} indicates the corresponding
image-level class label (i.e. presence/absence of the object of interest in the image). For
an image xs, we use the image-level features zs (Eq. 2) to generate a classification score.
Similar to [26], we classify the whole image by a linear classifier with parameters ws,c:

f (xs;{wa,ws,c}) = w>s,czs (3)

where f (xs;{wa,ws,c}) is the score of classifying zs to be a positive class.
We use the logistic loss for the whole image classification on the images in the source

domain:

`class({wa,ws,c}) =
1
N

N

∑
n=1

log
(

1+ exp
(
−y(n) f

(
x(n)s ;{wa,ws,c}

)))
(4)

Similar to [26], we use the attention score ai of each object proposal to localize the object
of interest. If the attention score ai is high, we consider the object proposal more likely to
contain the object. For the object localization prediction, we define a loss that measures
how well the localized bounding box matches the ground-truth bounding box. This loss is
defined as follows. Given a predicted bounding box Bp and a ground-truth bounding box
Bgt , we compute the intersection-over-union (IoU) as area(Bp∩Bgt )

area(Bp∪Bgt )
. If this IoU measurement

is greater than 0.5, we consider this predicted bounding box to be correct and assign it a
value of 1. Otherwise we assign a value of 0. We can then assign 0 or 1 to each of the
object proposals in an image to indicate whether this proposal has enough overlap with the
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ground-truth bounding box. We use v(n)i to denote this 0/1 value of the i-th object proposal
in the n-th training image. We use a(n)i to denote the attention score of this object proposal.
Our localization loss is defined as:

`localize =
1
N

N

∑
n=1

K

∑
i=1

(v(n)i −a(n)i )2 (5)

This loss function will encourage our model to produce attention scores that are consistent
with v(n)i .

The final loss function in the image stream is the combination of Eq. 4 and Eq. 5, i.e.:

L1({wa,ws,c}) = `class + `localize (6)

3.3 Video Stream
In the video stream, our network receives video frames (target domain) that are weakly
labeled, where only the classification label of a frame is available. Let us assume that there
are M video frames {x(m)

t ,y(m)}M
m=1. Given a video frame xt , we use the frame-level feature

zt (Eq. 2) to generate a classification score. We then classify the whole frame by a linear
classifier with parameters wt,c:

f (xt ;{wa,wt,c}) = w>t,czt (7)

where f (xt ;{wa,wt,c}) is the score of classifying zt to be a positive instance of the object
class.

Similar to the image stream, we use the logistic loss to measure the classification perfor-
mance on the video frames in the target domain.

L2({wa,wt,c}) =
1
M

M

∑
m=1

log
(

1+ exp
(
−y(m) f

(
x(m);{wa,wt,c}

)))
(8)

Unlike the image stream, we do not define the loss in terms of object localization in the
video stream, since we do not have the ground-truth object bounding boxes in the target
domain.

3.4 Domain Adaptation
The images in the source and target domains may have very different characteristics. For
example, frames in a video tend to be low resolution and have motion blur. In this section, we
incorporate a domain adaptation loss in our model to account for this domain shift between
source and target domains.

We use the multiple kernel maximum mean discrepancies (MK-MMD)[12] to define the
domain adaptation loss. MK-MMD has been proved to be a very effective domain adaptation
technique. Let image-level features zs (Eq. 2) and frame-level features zt (Eq. 2) be the
feature vector from source domain and target domain, respectively. We use p and q to denote
the distribution of the data from the source and target domains. The MK-MMD loss is
defined as:

L3 = d2
k (p,q) =∆ ‖Ep[zs]−Eq[zt ]‖2

Hk
(9)
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In Eq. 9, Ep[zs] and Ep[zt ] denote the mean feature vectors of zs and zt from source and
target domains respectively. In practice, Ep[zs] and Ep[zt ] can be computed as the average of
training data in the source domain and target domain. Hk denotes producing a kernel Hilbert
space associated with certain kernel k. In this work, we use the following kernel:

k(xs,xt) =
〈
zs,zt

〉
(10)

MK-MMD finds a feature representation by minimizing the discrepancy between differ-
ent domain examples and makes the features more similar between domains. Here in this
work we use Maximum Mean discrepancy loss L3 to minimize the discrepancy between zs
and zt .

Our final model is learned by optimizing the combination of the loss functions defined
in Eqs. 6 8 9:

L(xs,xt ;wa,ws,c,wt,c) = L1(wa,ws,c)+L2(wa,wt,c)+L3 (11)

3.5 Temporal Smoothing
If we are simultaneously localizing the object in all frames of a video, we can use temporal
smoothing to further improve the result of localization. The intuition is that the appearance
and spatial location of the bounding box found in each frame should be consistent across the
video. We use an idea similar to [16] for the temporal smoothing.

We consider the frames in a video as an undirected chain graph where a node in the graph
represents a frame with certain number of object proposals and an edge represents the tem-
poral relationship between two adjacent frames. Suppose there are T frames X1,X2, ....,XT in
a particular video. We represent the bounding box that contains object of interest in each of
the T frames as P1,P2, ....,PT , where Pi ∈ {1,2, ...,K} denotes one of the K object proposals
that is selected to contain the object in the i-th frame. We solve the following optimization
problem to enforce temporal consistency across frames of a video:

max
P1,P2,....,PT

∑
i

ϕ
(
Pi,Xi

)
+ ∑

i,i+1
ψ
(
Pi,Pi+1

)
(12)

where ϕ
(
Pi,Xi

)
is a unary potential indicating how likely a particular object proposal can

contain the object of interest. We set ϕ
(
Pi,Xi

)
as the attention score of the object proposal.

The pairwise potential ψ
(
Pi,Pi+1

)
applies the constraint on the bounding boxes between

two adjacent frames. Following [16], we define the temporal relationship Ctemporal(Pi,Pj
)

between two bounding boxes of adjacent frames Pi and Pj in a video as follows,

Ctemporal(Pi,Pj
)
= α

(
‖ fc (Pi)− fc (Pj)‖2

2 +‖ fa (Pi)− fa (Pj)‖2
2

)
(13)

Here fc (Pi) denotes the center of the bounding box and fa (Pi) denotes the area of the
bounding box. The intuition behind this temporal formulation is that the object position and
size do not change significantly between two adjacent frames. Using the temporal relation-
ship Ctemporal(Pi,Pj

)
, we define the pairwise potential ψ

(
Pi,Pj

)
between two adjacent frames

of a video as follows:

ψ
(
Pi,Pj

)
= exp

(
−
(
Ctemporal(Pi,Pj)

)2
)

(14)
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4 Experiments
In this section, we present the experimental results of our proposed method. We first describe
the datasets and experiment setup (Sec. 4.1). Then we present the results on two different
datasets (Sec. 4.2).

4.1 Experiment Setup
Dataset: To evaluate our model, we need a dataset of images with bounding boxes as the
source domain, and a dataset of weakly labeled videos as the target domain. Given these
datasets in two domains, our goal is to localize the object in the target domain.

We use the images from the PASCAL VOC2007 dataset [5] as the fully supervised source
domain. This dataset contains 20 object classes. The bounding boxes of these objects are
provided. We then consider two different video datasets as the target domain and present
our experimental results. The object categories of these video datasets are a subset of the
20 object categories in PASCAL VOC2007. Each video in the target domain is weakly
labeled. For a given object category (e.g. “car”), if a video is labeled as positive for this
object category, we assume that this object appears in every frame of the video. Our goal is
to localize this object in each frame. We build our model for each object category separately.
For example, when we learn a model for “car”, we consider the frames of car videos as
positive instances, and frames of other videos as negative instances.
Performance metric: We measure how well our proposed model localizes the object in
the videos in the target domain using the CorLoc measurement defined in [4]. For each
frame in a video, we measure the intersection-over-union (IoU) between the localized object
bounding box and the ground-truth object bounding box. If the IoU is greater than 0.5, we
consider this frame to be correctly localized. The CorLoc is computed as the percentage of
the video frames that are correctly localized.
Baselines: We compare our model with several baselines. (1) Video only: This baseline
ignores the images in the source domain and directly localizes the objects in the target (video)
domain using the weakly supervised learning. This baseline is equivalent to the attention
network in [26]; (2) Image only: This baseline ignores the videos in the target domain during
learning and only uses the fully labeled images in the source domain. This is equivalent to
learning a standard object detector (fast RCNN) using the fully labeled images in the source
domain, then directly applying the object detector for object localization on the videos in
the target domain. Since no bounding box information of target domain is available in this
setting, we cannot fine-tune the “image-only” fully supervised model on the video dataset;
(3) Video + image: This baseline is equivalent to ours, except that it does not perform domain
adaptation. In other words, it learns the model parameters by optimizing L1 +L2.

We use stochastic gradient descent to optimize the loss function with a momentum of
0.5 and learning rate of 0.001. We fix the mini-batch size in our experiments as 50. In each
mini-batch we forward 50 images from the image domain and 50 frames from the video
domain into the two-stream network. We define domain adaptation loss on each mini-batch
in our training. We use a single NVIDIA Tesla K40 GPU in our experiments.

4.2 Results
We show results on two video datasets. We use each of the video datasets as the target
domain and the PASCAL VOC2007 dataset as the source domain.
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aeroplane bird boat car cat

cow dog horse motorbike train

cat car aeroplane bird boat

train motorbike cow dog horse

Figure 3: Qualitative examples of object localization of our network on the YouTube-Objects
dataset. Ground-truth bounding boxes marked in Green whereas predicted bounding boxes
marked in Red.

method aero bird boat car cat cow dog horse bike train avg
Joulin et al.(video)[8] 25.12 31.18 27.78 38.46 41.18 28.38 33.91 35.62 23.08 25 30.97
Papazoglou et al.[13] 65.4 67.30 38.9 65.2 46.3 40.2 65.3 48.4 39 25 50.1

proposal only[15] 51.69 54.84 32.54 85.71 14.53 75.68 55.65 53.42 51.69 39.29 51.50
proposal + transfer[15] 56.04 30.11 39.68 85.71 24.79 87.83 55.65 60.27 61.8 51.79 55.37

video only [26] 55.07 62.37 43.65 84.62 28.21 66.22 58.26 53.42 62.92 39.29 55.40
image only 15.5 9.6 14.3 26.4 11.11 25.7 16.5 11 28.1 17.9 17.6

image + video 58.94 61.29 47.62 85.71 34.19 68.92 63.48 61.64 67.42 55.36 60.46
ours 60.39 62.37 48.41 85.71 34.19 71.62 66.09 63.01 70.79 57.14 61.97

Table 1: CorLoc results on the YouTube-Objects dataset.

YouTube-Objects Dataset: This dataset [14] is collected from videos of 10 different object
classes. The ground-truth bounding box is provided for one frame per video. It consists of
these frames with ground-truth bounding boxes (i.e. one frame per video).

Table 1 compares the CorLoc results of our method with other baselines. Our proposed
method outperforms all the other approaches. Figure 3 shows qualitative examples of object
localization on this dataset. Note that since this dataset only contains one frame from each
video, we cannot apply the temporal smoothing (described in Sec. 3.5) on this dataset.
YouTube-Objects-Subset Dataset: This dataset is introduced by Tang et al. [24]. It con-
tains a subset of the videos from the YouTube-Objects dataset, but it has more ground-truth
annotations.

Table 2 shows the localization results on this dataset. Since we have ground-truth annota-
tion on all the frames in a video on this dataset, we apply the temporal smoothing technique
in Sec. 3.5. We find that our proposed model outperforms other alternatives. Moreover,
temporal smoothing further improves the localization results of our method.
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method aero bird boat car cat cow dog horse bike train avg
proposal only[15] 42.23 51.24 29.54 67.76 14.75 50.20 47.02 22.18 16.44 18.84 36.02

proposal + transfer[15] 45.74 55.47 39.51 58.75 26.51 55.00 43.51 33.71 32.76 25.63 41.66
video only [26] 49.19 45.52 43.94 69.32 26.43 60.24 56.03 40.39 40.39 19.91 45.10

image only 17.64 30.02 13.39 22.01 12.58 19.64 22.64 15.71 5.93 8.53 16.81
image + video 50.46 54.39 45.09 71.23 30.67 61.11 62.63 44.54 42.20 22.66 48.5

ours 53.42 59.87 45.95 71.06 32.95 62.09 63.95 45.31 42.93 23.18 50.1
ours + temporal 54.3 60.2 47.6 72.1 34.3 63.2 65.1 46.6 44.0 23.3 51.1

Table 2: CorLoc results on the YouTube-Objects-Subset dataset.

5 Conclusion
In this work, we have proposed an approach for localizing objects in weakly labeled video.
The novelty of our work is that in addition to weakly labeled videos, we also assume access
to a set of labeled images. Instead of directly learning an object detector from the labeled
images and applying it on the videos, our proposed approach takes into account the domain
shift between images and videos. We use domain adaptation to transfer the knowledge from
the labeled images (source domain) to the weakly labeled videos (target domain). Our ex-
perimental results show that our proposed method outperforms other alternative approaches.
One interesting application of our proposed method is that it provides a possible way of
building large-scale video dataset for object detection by using the existing labeled image
datasets and the vast amount of weakly labeled videos available online.
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