
: CASCADED BOUNDARY REGRESSION FOR TEMPORAL ACTION DETECTION 1

Cascaded Boundary Regression for
Temporal Action Detection
Jiyang Gao
jiyangga@usc.edu

Zhenheng Yang
zhenheny@usc.edu

Ram Nevatia
nevatia@usc.edu

Institute for Robotics and Intelligent
Systems
University of Southern California
Los Angeles, CA, USA

Abstract

Temporal action detection in long videos is an important problem. State-of-the-art
methods address this problem by applying action classifiers on sliding windows. Al-
though sliding windows may contain an identifiable portion of the actions, they may not
necessarily cover the entire action instance, which would lead to inferior performance.
We adapt a two-stage temporal action detection pipeline with Cascaded Boundary Re-
gression (CBR) model. Class-agnostic proposals and specific actions are detected respec-
tively in the first and the second stage. CBR uses temporal coordinate regression to refine
the temporal boundaries of the sliding windows. The salient aspect of the refinement pro-
cess is that, inside each stage, the temporal boundaries are adjusted in a cascaded way by
feeding the refined windows back to the system for further boundary refinement. We test
CBR on THUMOS-14 and TVSeries, and achieve state-of-the-art performance on both
datasets. The performance gain is especially remarkable under high IoU thresholds, e.g.
map@tIoU=0.5 on THUMOS-14 is improved from 19.0% to 31.0%.

1 Introduction
Temporal action detection in long videos is an important and challenging problem, which
has been receiving increasing attention recently. Given a long video, the task of action
detection is to localize intervals where actions of interest take place and also predict the
action categories.

Good progress has been achieved in action classification [21, 24], where the task is to
predict action classes in "trimmed" videos. Current state-of-the-art methods [15, 20, 28] on
action detection extend classification methods to detection by applying action classifiers on
dense sliding windows. However, while sliding windows may contain an identifiable portion
of the action, they do not necessarily cover the entire action instance or they could contain
extraneous background frames, which may lead to inferior performance. Similar observa-
tions have also been made for use of sliding windows in object detection [19]. Inspired by
object detection, Shou et al. [20] proposed a two-stage pipeline for action detection, called
SCNN. In the first stage, it produces actionness scores for multi-scale sliding windows and
outputs the windows with high scores as class-agnostic temporal proposals; in the second
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stage, SCNN categorizes the proposals to specific actions. However, SCNN still suffers
from the imprecision of sliding window intervals.

To improve temporal localization accuracy, recently a method called TURN [5] proposed
to use temporal boundary regression. TURN takes sliding windows and their surrounding
context as input and refines their temporal boundaries by learning a boundary regressor. We
propose that the process of boundary estimation can be improved by deploying a cascade,
where a regressed clip is fed back to the system for further refinement. As the system could
observe different content in each round of refinement, the boundary can be refined gradually.

We adapt a two-stage action detection model with temporal coordinate regression. In the
first stage, our model takes sliding windows as input, and outputs class-agnostic temporal
proposals. In the second stage, our model detects actions based on the proposals. The salient
aspect in our model is that, inside each stage, we propose to use Cascaded Boundary Re-
gression (CBR) to adjust temporal boundaries in a regression cascade, where regressed clips
are fed back to the system for further boundary refinement. The main differences compared
with TURN are (1) the use of cascaded boundary regression, (2) a full pipeline for action
detection (TURN only focus on proposal generation). We evaluate CBR on two challeng-
ing datasets: THUMOS-14 and TVSeries [2]. CBR outperforms state-of-the-art methods on
both temporal action proposal generation and action detection tasks by a large margin. The
performance gain is especially remarkable under high IoU thresholds, e.g map@tIoU=0.5
on THUMOS-14 is improved from 19.0% to 31.0%.

Our contributions are two-fold:
(1) We propose a Cascaded Boundary Regression method for temporal boundary estima-

tion, which is shown to be effective on both proposal generation and action detection.
(2) We evaluate CBR on both proposal generation and action detection, and achieve

state-of-the-art performance on both THUMOS-14 and TVSeries [2].

2 Related Work
Temporal action detection, temporal proposal generation and object detection are related to
our work, we will introduce these three topics in this section.

Temporal Action Detection Temporal action localization has been received much atten-
tions recently. S-CNN [20] presented action detection framework which involves two stages:
the first stage uses proposal network to generate temporal action proposals; the second stage
classifies the proposals with localization network, which is trained using classification and
localization loss. Singh et al. [22] extended two-stream [21] framework to multi-stream net-
work and use bi-directional LSTM networks to encode temporal information, they achieved
state-of-the-art performance on MPII-Cooking dataset [18]. Ma et al. [14] addressed the
problem of early action detection. They proposed to train a LSTM network with ranking
loss and merge the detection spans based on the frame-wise prediction scores generated by
the LSTM. Sun et al. [23] proposed to transfer knowledge from web images to address
temporal detection in untrimmed web videos.

Temporal Action Proposal. Similar to object proposal generation, temporal proposal
generation aims to produce class-agnostic proposals efficiently and accurately. Sparse-prop
[1] presented a method that use STIPs [12] and dictionary learning for class-independent
proposal generation. SCNN-prop [20] presented a method that fine-tunes 3D convolutional
network [24] for binary proposal classification. DAPs [3] used LSTM networks to encode
a video stream and produce proposals inside the video stream. Gao et al. [5] proposed a
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Figure 1: Architecture of two-stage action detection pipeline with Cascaded Boundary
Regression (CBR)

method, called TURN, to use unit-level temporal coordinate regression to refine the temporal
action boundary.

Object Proposals and Object Detection. Recent successful object detection frame-
works [6, 7, 17] are built on high quality object proposals. SelectiveSearch [25] and Edge-
box [29] rely on hand-crafted low-level visual features. R-CNN [7] and Fast R-CNN [6] use
this type of object proposals as input. RPNs [17] proposed to use anchor boxes and spa-
tial regression for object proposal generation, which is based on ConvNet’s conv-5 featmap.
YOLO [16] proposed to divide the input image into grid cells and estimate the object bound-
ing box by coordinate regression. SSD [13] further adopted multi-scale grid cells to predict
bounding boxes.

3 Methods
In this section, we describe the two-stage Cascaded Boundary Regression (CBR) network
and the training procedure, its architecture is shown in Figure 1. This work is inspired by
[5], so we use similar notations in the following.

3.1 Video Unit Feature Extraction
A video V containing T frames, V = { fi}T

1 , is divided into T/u f consecutive video units
, where u f is the number of frames in a unit. A video unit can be represented as u =

{ti}
fs+u f−1
fs , where fs is the starting frame, fs + u f − 1 is the ending frame fe. Units do

not overlap with each other. Each unit is processed by a visual encoder Ev to get a unit-level
representation fu = Ev(u). In our experiments, C3D [24] and two-stream CNN models [21]
are investigated. Details are given in Section 4.

3.2 Video Clip Modeling
A clip c is composed of units, c = {u j}us+cu−1

us , where us is the index of starting unit and cu
is the number of units inside c. ue = us+cu−1 is the index of ending unit ue, and {u j}ue

us are
called internal units of c. Besides the internal units, surrounding units for c are also modeled.
{u j}us−1

us−nctx
and {u j}ue+nctx

ue+1 are the surrounding units before and after c respectively, nctx is
the number of units we consider. The surrounding units provide temporal context for clips,
which are important for temporal boundary inferring. Internal feature and context features
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are pooled from unit-level features separately by mean pooling operation P. The final feature
fc for a clip is the concatenation of context features and the internal feature.

fc = P({u j}su
su−nctx

) ‖ P({u j}eu
su ) ‖ P({u j}eu+nctx

eu ) (1)

where ‖ represents vector concatenation. We scan a video by multi-scale temporal sliding
windows. The temporal sliding windows are modeled by two parameters: window length li
and window overlap oi. Note that, although multi-scale clips would have temporal overlaps,
the clip-level features are computed from unit-level features, which are only calculated once.

3.3 Temporal Coordinate Regression
We first introduce temporal coordinate regression and then introduce the two-stage proposal
and detection pipeline. Our goal is to design a method which is able to estimate the temporal
boundaries of actions. For spatial boundary regression, previous works [6, 17] use param-
eterized coordinate offsets, that is, the boundary coordinates are first parameterized by the
central coordinates and the size (i.e. length and width) of the bounding box, the offsets are
calculated based on these parameterized coordinates. In the temporal coordinate settings, the
parameterization offsets could be represented as,

ox = (xgt − xclip)/lclip, ol = log(lgt/lclip) (2)

where x and l denote the clip’s center coordinate and clip length respectively. Variables
xgt ,xclip are for ground truth clip and test clip (likewise for l).

Instead of using parameterization, non-parameterized offset is to use the start and end
coordinates directly. Specifically, there are two levels of coordinates: frame-level and unit-
level. The frame-level coordinate is the index of the frame fi; the unit-level coordinate is the
index of the unit u j. For an action instance, the ground truth start and end coordinates tgt

s

and tgt
e are usually annotated in seconds, which could be always transferred to frame-level

(multiplied by FPS) f gt
s and f gt

e , the unit-level ground truth coordinates are calculated by
rounding:

ugt
s =< f gt

s /u f >, ugt
e =< f gt

e /u f > (3)

where < · > represents rounding, u f is the frame number in a unit. The non-parameterized
regression offsets are

os = sclip− sgt , oe = eclip− egt (4)

where sclip, eclip are the start and end coordinates of the input clip, which could be at frame-
level or unit-level. sgt , egt are the coordinates for the matched ground truth action instance.
The intuition behind unit-level coordinate regression is that, as the basic unit-level features
are extracted to encode nu frames, the feature may not be discriminative enough to regress
the coordinates at frame-level. Comparing with frame-level regression, unit-level coordinate
regression is easier to learn, though with coarser boundaries.

3.4 Two-Stage Proposal and Detection Pipeline
Inspired by the proposal and detection pipeline in object detection, we design a two-stage
pipeline for temporal action detection, in which class-agnostic proposals and class-specific
detections are generated respectively, shown in Figure 1. In both stages, temporal coordinate
regression is used to infer temporal action boundaries. Sepcifically, given a clip c =< s,e >,
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it is first processed by the proposal network, which outputs two boundary regression offsets
< os,oe > and an actionness score p indicating whether c is an action instance. If the output
p is higher than a threshold θ , the detection network takes c′ =< s′,e′ > (new temporal
boundaries) as input and generates n + 1 softmax scores pz,x ∈ [1,n + 1] and n pairs of
boundary offsets < oz

s,o
z
e >,x ∈ [1,n], where n is the number of action categories.

3.5 Cascaded Boundary Regression

Figure 2: Unrolled model of Cascaded Boundary Regression (CBR), the parameters of the
MLPs are shared.

In each stage (i.e. the proposal and detection stages), boundary regression is applied in
a cascaded manner–the output boundaries are fedback as input to the network for further
refinement, as shown in Figure 2. For proposal network, given a input clip c =< s,e >, the
output clip c1 =< s1,e1 > is fedback as input to do a second round of refinement, and the
second output is c2 =< s2,e2 >. The iteration process takes K p

c steps, the final boundaries
and the actionness score for c are

cK p
c
=< sK p

c
,eK p

c
>, p =

K p
c

∏
i=1

pi (5)

The cascade process of detection network is similar to that of proposal network. For
detection network, it outputs n pairs of temporal boundary offsets and n+1 category scores.
Among the n non-background categories, we take the category with the highest score as the
prediction x, and pick the corresponding boundary offsets < os,x,oe,x >. The refined clip
c1 =< s1

x ,e
1
x > is fed back into the network. After Kd

c steps, the final boundaries and score
for the predicted category x are

cKd
c
=< sz

Kd
c
,ez

Kd
c
>, p =

Kd
c

∏
i=1

pz
i (6)

The proposal network and the detection network are trained separately, details could be found
in the next section. In either stage (proposal or detection), each cascade step could be trained
separately, but here we have chosen to use the same network parameters in each step for
simplicity.
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3.6 Loss Function

To train CBR, we collect training samples from sliding windows, whose parameters (overlap
and window length) will be introduced in Section 4. A class label is assigned to a sliding
window if: (1) the window clip with the highest temporal Intersection over Union (tIoU)
overlaps with a ground truth clip; or (2) the window clip has tIoU larger than 0.5 with any of
the ground truth clips. Note that, a single ground truth clip may assign its label to multiple
window clips. Negative labels are assigned to non-positive clips whose tIoU is equal to 0.0
(i.e. no overlap) for all ground truth clips. We design a multi-task loss L to jointly train
classification and coordinate regression.

L = Lcls +λLreg (7)

where Lcls is the loss for classification, which is a standard cross-entropy loss. For proposal
network, Lcls is a binary classification cross-entropy loss; for detection network, Lcls is a
stardard multi-class cross-entropy loss. Lreg is for temporal coordinate regression and λ is a
hyper-parameter, which is set empirically. The regression loss is

Lreg =
1
N

N

∑
i=1

n

∑
z=1

lz
i [R(ô

z
s,i−oz

s,i)+R(ôz
e,i−oz

e,i)] (8)

where R is L1 distance, N is batch size and n is the total number of categories, lz
i is the label,

when the ith sample is from category z, lz
i = 1, otherwise, lz

i = 0. ô is the regression estimate
offset, and o is the ground truth offset. For parameterized offsets, oz

s,i and oz
e,i are replaced

by oz
x,i and oz

l,i.
The learning rate and batch size are set as 0.005 and 128 respectively. We use the Adam

[11] optimizer to train CBR. The ratio of sample numbers of background to non-background
in a mini-batch is set to be 10 for training proposal network. For training detection network,
the number background samples are equal to the average sample numbers of all categories.
λ is set to 2 for both proposal and detection network.

4 Evaluation

We evaluate the effectiveness of the proposed Cascaded Boundary Regression (CBR) on
standard benchmarks THUMOS-14 and TVSeries for both temporal action proposal genera-
tion and action detection.

Unit-level Feature Extraction. C3D unit-level features: The C3D model is pre-trained
on Sports1M [10], we uniformly sample 16 frames in a unit and then input them into C3D;
the output of f c6 layer is used as unit-level feature. Two-stream features: We use the two-
stream model [26] that is pre-trained on ActivityNet v1.3 training set. In each unit, the
central frame is sampled to calculate the appearance CNN feature, which is the output of
"Flatten_673" layer in ResNet [8]. For the motion feature, we sample 6 consecutive frames
at the center of a unit and calculate optical flows [4] between them; these flows are then
fed into the pretrained BN-Inception model [9, 26] and the output of "global pool" layer
is extracted. The motion features and the appearance features are concatenated into 4096-
dimensional vectors, which are used as unit-level features.
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4.1 Experiments on THUMOS-14
We first introduce the datasets and the experiment setup, then discuss the experimental results
on THUMOS-14.

Dataset. The temporal action localization part of THUMOS-14 contains over 20 hours
of videos from 20 sport classes. There are 200 untrimmed videos in validation set and 213
untrimmed videos in test set. The training set of THUMOS-14 contains only trimmed videos.
We train our model on the validation set and test it on the test set.

Experimental setup. We perform the following experiments on THUMOS-14: (1) ex-
plore components in the proposed framework: (a) parametrized offsets vs non-parameterized
unit-level regression vs non-parameterized frame-level regression, (b) cascaded steps for
boundary regression; (2) comparison with state-of-the-art approaches. The unit size u f is
16, the surrounding unit number nctx is set to 4. The sliding window lengths and overlaps are
{16(16),32(16),64(16),128(32),256(64),512(128)}, where the numbers out of brackets
are lengths of sliding windows, and the numbers in brackets are the corresponding overlaps
of the sliding windows.

Temporal coordinate regression. To explore which type of coordinate offsets is most
effective for boundary regression in temporal action detection, we test three types: (a) pa-
rameterized coordinate offsets, which are similar to the ones in object detection [17], (b)
non-parameterized frame-level coordinate offsets and (c) non-parameterized unit-level coor-
dinate offsets. The results of temporal action detection are listed in Table 1. The cascade
step Kc is set to be 1 for both proposal stage and detection stage. Both C3D feature and
Two-stream CNN feature are tested.

Table 1: Comparison of different coordinate offsets on action localization (%
mAP@tIoU=0.5): parameterized, non-parameterized frame-level, non-parameterized unit-
level. The performance with no boundary regression is also listed.

no regression parameterized non-para, frame-level non-para, unit-level
CBR-C3D 16.7 19.4 18.8 20.5
CBR-TS 22.3 26.1 25.3 27.7

We can see that all three regression offsets provide improvement over "no regression".
Unit-level offsets are more effective than frame-level offsets; we think the reason is that,
the features are extracted at unit level, frame-level coordinates contain redundant informa-
tion, which may make the regression task more difficult. The performance of parameterized
coordinate offsets is lower than that of non-parameterized unit-level offsets. We think that
the reason is that unlike objects which can be re-scaled in images with camera projection,
actions’ time spans can not be easily re-scaled in videos, although the time spans of the same
action can be varied in different videos. Therefore, "time" itself work as a standard scale for
action instances.

Cascaded boundary regression. We explore the effects of boundary regression cascade.
Cascade step K p

c and Kd
c are the number of boundary regression conducted in proposal stage

and detection stage respectively. The results are shown in Table 2 and Table 3. We investigate
the cascade step with C3D feature and two-stream CNN feature. Non-parameterized unit-
level coordinate offset is adopted.

For the proposal network (shown in Table 2), we can see that cascaded boundary regres-
sion increase the performance from 42.7 to 45.0 for two-stream features, and from 38.6 to
39.6 for C3D features. When K p

c = 3, two-stream CBR achieves the best performance, and
after the performance peak, the performance drops slightly.
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Table 2: Comparison of cascaded step K p
c = 1,2,3,4 for temporal proposal generation (%

AR@F=1.0) on THUMOS-14.
K p

c = 1 K p
c = 2 K p

c = 3 K p
c = 4

CBR-C3D 38.6 39.6 39.4 37.8
CBR-TS 42.7 44.5 45.2 44.8

Table 3: Comparison of cascaded step Kd
c = 1,2,3,4 for temporal action detection (%

mAP@tIoU=0.5) on THUMOS-14.
Kd

c = 1 Kd
c = 2 Kd

c = 3 Kd
c = 4

CBR-C3D 21.5 22.7 22.4 22.2
CBR-TS 28.4 31.0 30.5 30.2

To test the effects of cascaded boundary regression for action detection, we fix K p
c = 3.

As shown in Table 3, we observe a similar trend as in proposal generation: when Kd
c = 2,

CBR increases the performance from 28.4 to 31.0 for two-stream features, and from 21.5 to
22.7 for C3D features. After Kd

c = 2, the performance becomes saturated.

Table 4: Comparison with state-of-the-art on temporal action proposal generation. Average
Recall at Proposal Frequency (AR@F=1.0) performance are reported.

Method Sparse-prop[1] DAPs[3] SCNN-prop[20] TURN-FL [5] CBR-FL CBR-TS
AR@AN=200 32.3 34.1 37.2 42.8 43.5 44.2
AR@F=1.0 33.3 35.7 38.3 43.5 44.4 45.2

Comparison with state-of-the-art on temporal proposal generation. We compare
CBR-P with state-of-the-art methods on temporal action proposal generation, including SCNN-
prop [20], DAPs[3] and Sparse-prop [1] and TURN [5]. The results are shown in Table 4. To
fairly compare with TURN, we also provide the performance using only optical flow CNN
features, which is the same for TURN-FL. We can see that CBR-FL outperforms state-of-
the-art (TURN-FL) and CBR-TS provides further improvement over CBF-FL.

Comparison with state-of-the-art on temporal action detection. We compare our
method with other state-of-the-art temporal action localization methods on THUMOS-14,
the results are shown in Table 5. We compare with the challenge results [15], and recent
methods including based on segment window C3D [20], score pyramids [28] and deep re-
current reinforcement learning [27]. Both SCNN and CBR-C3D are based on C3D features,
we can see that CBR-C3D outperforms SCNN at all tIoU thresholds, especially at high tIoU,
which shows the effectiveness of CBR. If two-stream features are adopted, CBR outperforms
state-of-the-art methods by 12% at tIoU=0.5.

4.2 Experiments on TVSeries
We first introduce the datasets and the experiment setup, then discuss the experimental results
on TVSeries [2].

Dataset. The TVSeries Dataset [2] is a realistic, large-scale dataset for temporal action
detection, which contains 16 hours of videos (27 episodes) from six recent popular TV series.
30 daily life action categories are defined in TVSeries, such as "close door", "drive car",
"wave". There are totally 6231 action instances annotated with start and end times and action
categories in the dataset. The train/validation/test sets contain 13/7/7 episodes respectively.

Experimental setup. We test the cascaded steps of boundary regression for both pro-
posal generation and action detection, and then compare with state-of-the-art performance on
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Table 5: Temporal action detection performance (mAP %) comparison at different tIoU
thresholds on THUMOS-14.

tIoU 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Oneata et al.[15] 36.6 33.6 27.0 20.8 14.4 8.5 3.2
Yeung et al.[27] 48.9 44.0 36.0 26.4 17.1 - -
Yuan et al. [28] 51.4 42.6 33.6 26.1 18.8 - -
SCNN [20] 47.7 43.5 36.3 28.7 19.0 10.3 5.3
CBR-C3D 48.2 44.3 37.7 30.1 22.7 13.8 7.9
CBR-TS 60.1 56.7 50.1 41.3 31.0 19.1 9.9

action detection. The unit size u f is 6, the surrounding unit number nctx is set to 4. The slid-
ing window lengths and overlaps are {12(6),24(6),48(12),72(18),96(24),192(48),384(96)},
where the numbers out of brackets are lengths of sliding window, and the numbers in brack-
ets are the corresponding overlaps of the sliding window.

Cascaded boundary regression. We explore the effects of cascaded boundary regres-
sion on TVSeries. Note that Kc is the cascaded step. We investigate the cascaded step with
two-stream CNN features.

Table 6: Comparison of cascaded step Kc = 0,1,2,3,4 for temporal action detection (%
mAP@tIoU=0.5) on TVSeries. Kc = 0 means that the system only do classification, no
boundary regression.

Kc = 0 Kc = 1 Kc = 2 Kc = 3 Kc = 4
Proposal (AR@F=1.0) 20.4 24.3 25.6 26.1 25.9
Detection (mAP@IoU=0.2) 6.2 8.8 9.5 9.2 9.0

As shown in Table 6, comparing with Kc = 0 and Kc = 1, we can see that temporal
coordinate regression brings a big improvement, which shows its effectiveness. We can also
see that when Kc = 3, CBR achieves the best performance for proposal network. To test
detection network, we fix K p

c = 3, the results show that when Kd
c = 2 CBR achieves the best

performance for action detection. After the peak, the performance starts to decrease. The
performance distribution of cascaded step is consistent with THUMOS-14.

Comparison with state-of-the-art on action detection. We compare CBR with state-
of-the-art performance on TVSeires in Table 7. Overall, we can see that TVSeries is a
more challenging dataset than THUMOS-14. To provide another comparison, we train SVM
classifiers based on two-stream features, which is shown in Table 7 as SVM-TS. The SVM
classifiers are trained and tested using the same samples as CBR, which are described in
Section 3.6; clip-level features are mean-pooled from unit-level features. We can see that
with the same features, CBR outperforms the SVM-based classifiers by 3.5% at tIoU=0.2.
At tIoU = 0.2, CBR achieves 9.5, while the state-of-the-art method FV [2] only achieves
4.9. We also report mAP performance at tIoU = 0.1 and tIoU = 0.3, which are 11.0 and 7.9
respectively.

Table 7: Temporal action detection performance (mAP %) comparison at different tIoU
thresholds on TVSeries.

tIoU CNN [2] LSTM [2] FV [2] SVM-TS CBR-TS
0.1 - - - 7.3 11.0
0.2 1.1 2.7 4.9 6.0 9.5
0.3 - - - 4.6 7.9
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5 Conclusion
We present a novel two-stage action detection pipeline with Cascaded Boundary Regression
(CBR), which achieves state-of-the-art performance on standard benchmarks. In the first
stage, temporal proposals are generated; based on the proposals, actions are detected in
the second stage. Cascaded boundary regression are conducted in both stages. Detailed
experiments and analysis on cascaded steps are conducted, which show the effectiveness
of CBR for both temporal proposal generation and action detection. Different temporal
regression offset settings are also investigated and discussed. State-of-the-art performance
has been achieved on both THUMOS-14 and TVSeires dataset.
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