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Abstract

In this paper, we propose a new framework for action localization that tracks people
in videos and extracts full-body human tubes, i.e., spatio-temporal regions localizing
actions, even in the case of occlusions or truncations. This is achieved by training a novel
human part detector that scores visible parts while regressing full-body bounding boxes.
The core of our method is a convolutional neural network which learns part proposals
specific to certain body parts. These are then combined to detect people robustly in each
frame. Our tracking algorithm connects the image detections temporally to extract full-
body human tubes. We apply our new tube extraction method on the problem of human
action localization, on the popular JHMDB dataset, and a very recent challenging dataset
DALY (Daily Action Localization in YouTube), showing state-of-the-art results.

1 Introduction

Human action recognition in videos is one of the most active fields in computer vision [5,
7, 8]. It offers a broad range of potential applications ranging from surveillance to auto-
annotation of movies, TV footage or sport-videos analysis. Significant progress has been
made recently with the development of deep learning architectures [16, 19, 23]. Action
localization in videos comprises recognizing the action as well as locating where it takes
place in the sequence. A popular method for achieving this is to track the person(s) of interest
during the sequence, extract image features in the resulting “human tube” i.e., the sequence
of bounding boxes framing a person, and recognize the action occurring inside the tube.
Such a method performs well when people are fully visible, and when correspondences can
be established between tubes extracted from different videos. This hypothesis does not hold
for most real-world scenarios, e.g., in YouTube videos, where occlusions and truncations at
image boundaries are common and makes action recognition more challenging. State-of-
the-art tracking algorithms [6] estimate a bounding box around the visible parts of a person,
resulting in non-homogeneous tubes that can cover parts of the human body, the full-body or
a mix of both in cases of close-up or moving cameras. For example, in Figure 1, a standard
human tube extraction method frames the upper-body of the woman ironing, then the hands
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Standard human Proposed
tubes full-body tubes

Input video

Figure 1: Two example videos from the DALY dataset to illustrate the difference between
our human tube extraction and previous methods (a state-of-the-art method [23] is used for
illustration here). Note that our tubes (shown on the right) take the occluded parts as well as
parts beyond the image boundaries into account.

and arms, and finally the upper-body again. We posit that extracting full-body human tubes,
even in case of occlusions or truncations, should help establish better correspondences and
extract more discriminative features, improving action localization performance in complex
scenarios.

The intuition behind our approach is that a bounding box corresponding to the full human
body can often be inferred even if only parts of the person are visible—scene context and
body pose constraints (feasible kinematic configurations) help estimate where the occluded
or truncated body parts are (see the examples shown in our extracted tubes in Figure 1). To
exploit such cues, we propose to train a human part detector that scores the visible parts but
also regresses a full-body bounding box. We present a new tracking algorithm that simulta-
neously tracks several parts of a person-of-interest and combines the corresponding full-body
bounding boxes inferred (regressed) from these parts to reliably localize the full-body. We
demonstrate that our novel tube extraction approach outperforms state-of-the-art algorithms
for action detection and localization [22, 23].

2 Related work

Initial attempts for temporal and spatio-temporal action localization are based on a sliding-
window scheme and handcrafted descriptors [2, 3, 13, 25]. Other approaches, such as [11,
12], rely on figure-centric models, wherein the person performing the action and their loca-
tion is detected in some form. In [12], the location of a person is treated as a latent variable
when inferring the action performed, while the upper body is explicitly detected and tracked
in [11]. Our approach is also based on human detections but is significantly more robust to
large variations in pose and appearance, due to our learning-based algorithm. More recently,
methods based on action proposals [7, 14, 15, 21, 24] have been employed to reduce the
search complexity and improve the quality of tracks, referred to as “tubes”. This paradigm
has produced promising results, but these methods generate thousands of proposals even for
a short video sequence, and are not scalable to large video datasets. Moreover, they do not
take hidden parts and occlusions into account, and are very sensitive to viewpoint changes.
In contrast, our method computes one tube for each person in the sequence, taking into ac-
count body parts that are occluded or truncated by image boundaries, thereby addressing the
problem of amodal completion [10] in the context of action localization.

Recent work has leveraged the success of deep learning for vision tasks in the context of
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human action localization [5, 16, 19, 22], by using successful object detectors, like region
proposal-based convolutional neural networks [17]. Region-CNNs (R-CNNss) are trained for
both appearance and motion cues in these methods to classify region proposals in individ-
ual frames. Human tubes are then obtained by combining class-specific detections with ei-
ther temporal linking based on proximity [5], or with a tracking-by-detection approach [22].
State-of-the-art methods [16, 19] rely on an improved version of R-CNN, e.g., Faster R-
CNN [17], trained on appearance and flow. These methods make extensive use of bounding
box annotations in every frame for training the network. Although this scheme is accurate
for short videos, it is not scalable to long videos with viewpoint changes and close-ups, such
as the examples shown in Figure 1. Our method automatically determines the best part to
track and infers the global localization of the person from the part alone. The merging step
of this inference for each part refines the final bounding box proposed for the frame.

The very recent work in [23] is also related to our approach. It extracts human tubes
with a Faster R-CNN based detector. These tubes are then used to localize and detect actions
by combining dense trajectories, appearance and motion CNN classifiers. However, this
method is also limited to tubes which frame only visible parts of people, and as a result
loses spatial correspondences between frames, thus impacting feature extraction. In contrast,
our method tracks the entire person during the full sequence, making it robust to partial
occlusions, and preserves spatial information for feature extraction and action classification.
We establish new state-of-the-art results on the challenging DALY dataset proposed in [23],
which consists of 31 hours of YouTube videos, with spatial and temporal annotations for 10
everyday human actions.

3 Method: From Parts to Tubes

We propose a new framework for action localization that tracks people in videos and ex-
tract full-body humans tubes, even in case of occlusions or truncations. This is achieved
by training a novel human part detector that scores visible parts while regressing full-body
bounding boxes. Figure 2 shows an overview of our detection architecture that is detailed
in Section 3.1. The training phase begins with selection of part proposals that overlap with
groundtruth bounding boxes. These part proposals are then assigned a particular class label
based on their height-width ratio and location with respect to the bounding box. Finally, a
class specific regressor is trained to infer the full-body bounding box from these parts. At
test time, given an image, we first generate part proposals which are scored, and then use
them to regress full-body bounding boxes, see example in Figure 2. We then merge these
bounding boxes using a new tracking algorithm, detailed in Section 3.2. This algorithm si-
multaneously tracks several parts of a person-of-interest and combines the bounding boxes
inferred from these parts to construct a full-body human tube. Two examples are given in
Figure 1. Our tube extraction approach is then employed for action localization as detailed
in Section 3.3.

3.1 Detecting Parts

Inspired by recent advances of deep learning for computer vision problems, we propose a
CNN-based human part detector which is end-to-end trainable. Given a database of images
annotated with full-body 2D human poses, we first define a set of human parts from this
training data. Then, the learning phase trains our detector to: (1) generate relevant human
part proposals through a region proposal network (RPN) [17], (2) classify and score them,
and (3) regress the corresponding full-body bounding boxes.
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Annotated image Part proposal selection Class assignment BB regression

Figure 2: Overview of our part detector. During training, the detector learns to select relevant
part proposals in the annotated images. These proposals are assigned a specific class label
and employed to regress the target full-body bounding box (BB). At test time, the detector
generates part proposals, which are then classified and used to regress full-body bounding
boxes. These are merged to estimate the final bounding box (Merged BB).

Parts definition. In this paper, a human part is defined as a rectangular region covering a
small area of the full-body bounding box. It is represented by its location within the bounding
box (e.g., the “upper right” part), an aspect ratio (e.g., a “square” or a “rectangular” part), and
ascale. A set of parts is first extracted from the training set using a RPN [17]. The parts must
be big enough to contain relevant information and relatively small to ensure that multiple
different parts will cover the bounding box. To ensure having small parts, we consider only
regions overlapping a groundtruth box with an intersection over union (IoU) score below a
certain threshold. Each part is then represented by a four-dimensional vector containing its
2D location with respect to the bounding box center (normalized by bounding box height
and width) and its normalized height and width, expressed as percentages of the bounding
box height and width. The four values are between 0 and 1. A K-means clustering is finally
performed on the set of vectors. The centroids of the resulting K clusters define our set of
part classes. We augment this set of classes with an additional full-body class.

Parts proposal selection. As in [17], our architecture uses a RPN to find a set of rectangular
candidate regions. During the learning phase, this set is split into positive (blue boxes in
Figure 2) and negative proposals (red boxes in Figure 2). We consider a proposal as positive
if it is contained in the groundtruth box and has a fixed number of connected body keypoints,
with two keypoints being connected if they are directly linked on the human skeleton (e.g.,
head and shoulders).

Class-specific regression. For the class assignment stage, proposals that have a large IoU
score with the groundtruth box are labeled as full-body proposals, while others are assigned
to the closest part class, which is obtained by choosing the corresponding centroid with the
minimum ¢2-distance. Note that the groundtruth bounding box is considered as a positive
full-body proposal to include at least one positive exemplar for each class. The regression
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step then learns to regress the 2D image coordinates of the full-body bounding box. This
is done independently for each class to ensure class-specific regression. The goal here is to
localize the rest of the body from a single part. In the example in Figure 2, two proposal
boxes each are assigned to the classes corresponding to the upper-left area (shown in yellow)
and the legs area (in white). The full-body regression target is shown in green. We maintain
a fixed ratio between part proposals and full-body exemplars in the training batches.

Test time. Our detector first generates relevant part proposals (blue boxes in the lower part
of Figure 2). A full-body bounding box is regressed from each of these proposals (dashed
boxes in the figure). These regressed boxes corresponding to different part classes can be
merged to produce a single full-body bounding box in a frame with a weighted average,
where the weights are the classification scores. In Figure 2, the yellow box with a higher
score (0.9) has a greater influence than the white box (0.2) on the final merged bounding
box. This produces reasonable detections in several cases, but we present a more robust
approach which leverages all the candidate boxes for building tubes.

3.2 Building full-body tubes

Given the parts detected, and the corresponding regressed bounding boxes for the full body,
the next task is to build full-body tubes. We perform this by tracking all the parts detected
in each frame, to associate them temporally to their corresponding parts in other frames, and
then use them jointly to localize the person(s) performing action. To this end, we extend the
tracking algorithm in [22], which is limited to tracking the person as a whole and can not
handle challenging cases where the person is occluded, as demonstrated in the experimental
results (see Section 4.3).

Initialization and tracking the first part. We start by detecting body parts in the entire
video sequence, as described in Section 3.1. We find the box b* with the highest score
among all the part classes, and use it to initialize our tracking algorithm. Let this box be
from frame ¢ in the video, and let B* be the corresponding full-body (regressed) bounding
box. In frame ¢ + 1, we perform a sliding window search around the location of the tracked
box b*, and select the top scoring box. This score is a combination of the generic part detector
score (given by the detector in Section 3.1) and an instance-level tracker. The instance-level
tracker learns human part appearance in the initialization frame ¢, with a linear SVM and
features from the last fully-connected layer of our part detector. It is updated every frame
with the corresponding chosen box, in order to handle appearance changes over time. The
box b;+1 which maximizes the sum of part detector and instance-level scores, is regressed
with our part detector into a full-body box B;;1, and it becomes part of the tube for frame
t+1

Tracking several parts. Limiting the tracker to a single body type, which may become
occluded in some of the frames, is prone to missing the person performing an action. To
address this, we detect other parts included into the full-body box B, in frame # 4 1. For
example, if the first tracked part is the torso of a person, a second part could be legs detected
by our parts detector. Each detected part is then tracked independently in following frames,
with the method described above. The regressed full-body boxes of these tracked parts are
then combined to produce one full-body box in each frame, with a weighted average of the
sum of the part detector and instance-level scores.

3.3 Action localization

The final step of our approach is to localize actions from the extracted full-body tubes. We
achieve this by representing tubes with features and then learning an SVM for recognizing
actions. We use dense trajectories, RGB and Flow CNNs as features. A human tube is
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Figure 3: Qualitative results. The visible part of our full-body tubes is shown in blue. For
comparison, the tubes of the state-of-the-art method [23] are in red. Here, we show a sample
frame from four example videos corresponding to Cleaning windows, Drinking, Folding
Textile, and Ironing events of DALY.

considered as positive if the temporal intersection over union (IoU) with the annotated frames
is above a certain threshold. The temporal IoU is defined as the average per-frame IoU. For
this step, our tubes are cropped to frame boundaries to be comparable with groundtruth
annotations. For both RGB and Flow CNN, a R-CNN network is trained on the respective
dataset (i.e., JHMDB and DALY) as follows: region proposals in a frame whose IoU with
our estimated bounding box is above a threshold are labeled as positives for the class of the
tube. Action classifiers are learned for each of the features independently and then combined
using a late-fusion strategy. These steps are described in detail in Section 4.2.

4 Experiments
4.1 Datasets

Test data. We evaluate our method on two action recognition datasets, namely JHMDB [8]
and DALY [23]. JHMDB is a standard action recognition database used in [5, 16, 19, 22, 23].
It is a subset of the larger HMDBS51 dataset collected from digitized movies and YouTube
videos. It contains 928 videos covering 21 action classes. DALY is a more challenging large-
scale action localization dataset consisting of 31 hours of YouTube videos (3.3M frames,
3.6k instances) with spatial and temporal annotations for 10 everyday human actions. Each
video lasts between 1 and 20 minutes with an average duration of 3min 45s. We also use the
LSP dataset [9] for analyzing our full-body box generation method. LSP contains 2000 pose
annotated images of mostly sports people gathered from Flickr.

Training data. For training our human part detector, we use the MPII human pose dataset [1].
It covers around 400 actions and contains a wide range of camera viewpoints. The training
set consists of around 17k images, with each scene containing at least one person, often oc-
cluded or truncated at frame boundaries. As in [23], we compute a groundtruth bounding
box for each person by taking the box containing all annotated body keypoints with a fixed
additional margin of 20 pixels. To obtain full-body bounding boxes, in cases of occlusions
and truncations (where only visible key points are annotated), we employ a nearest neighbor
search on the annotated keypoints to complete missing annotations and recover complete
full-body 2D poses. As done in [18], we generate a large set (§M) of human 2D poses
by projecting 3D poses from the CMU Motion Capture dataset on multiple random camera
views. Then, for each incomplete 2D pose in the MPII training set, a search is performed
on the annotated 2D joints to estimate the closest match, i.e., full-body 2D pose, that is later
employed to estimate a full-body bounding box.

4.2 Implementation details

The implementation of our part detector is based on Faster-RCNN [17] with VGG16 lay-
ers [20]. The number of classes is set to 21: 20 human parts and the full body class.

Part detector. Keypoints are annotated in the MPII dataset we use to train the detector.
The connections between joints are defined following the standard human skeleton (e.g.,
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Figure 4: mAP@0.5 and mAP@0.7 results on JHMDB and DALY datasets with respect to
the number of parts used for building human tubes.
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Figure 5: Comparison of our method (trained with full-body boxes) and a variant that only
uses visible regions. mAP@0.5 and mAP@(.7 results on JHMDB and DALY datasets with
respect to the number of parts used for tube generation are shown.

head connected to shoulders, shoulders to elbows). For the part proposal selection stage,
we consider a proposal as positive if it overlaps the groundtruth box and contains exactly
three connected body keypoints. We tested with different numbers of keypoints and found
that three was an optimum number to maximize human detection rate on DALY (with re-
call@0.5). For the class assignment stage, proposals with IoU more than 0.55 are labeled as
full-body proposals, while those with IoU between 0.1 and 0.55 are assigned to the class of
the closest part.

Optimization. Initialization of the network is done with ImageNet pretrained weights. The
number of iterations is set to 180K, the learning rate to 0.001, the momentum to 0.9, the
gamma parameter to 0.1, i.e., the learning rate is divided by 10 at every learning step (@
100K, 150K, 170K iterations). We use batches of 128 proposals (32 positive and 96 back-
ground) and constrain each bach to have 10 times more part proposals than full-body exem-
plars.

Human tubes. For the DALY dataset, tubes are computed using every fifth frame for com-
putational reasons. During the tracking procedure, a box is removed if its combined score
(defined in Section 3.2) is less than 1. A new part is added to the tube if it has a detector
score of 0.25.

Action localization. The dimensions of the four descriptors (HOG, HOF, MBHx and MBHy)
are reduced by a factor of 2 using PCA and a codebook of 256 Gaussians. Appearance and
motion CNNs are based on R-CNN architecture proposed in [4]. Five annotated frames
per sequence are used as for computing the temporal IoU with our tubes. A human tube is
considered as positive if the temporal intersection over union (IoU) with the five annotated
frames is above 0.5. During training, the region proposals whose IoU with our estimated
bounding box is above 0.5 are labeled as positives for the class of the tube. One linear SVM
classifier each is learned independently for the three feature representations (dense trajec-
tory, appearance and motion CNNs). . During test time, scores are scaled between 0 and 1
using a sigmoid, and the global score of a tube is the sum of the three SVM scores.
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Features Method DALY JHMDB
meanAP@0.5 | meanAP@(.7 | meanAP@0.5 | meanAP@0.7
Dense Trajectories Ours 58.97 31.35 64.91 46.45
[23] 53.21 21.57 60.11 41.39
Appearance & motion CNNs | 5| £ 2837 6408 02
[5] - - 53.30 -
[22] - 60.70 -
[16] - 73.10 -
[19] - - 71.50 -
Combination Ours 67.79 39.05 68.85 49.10
[23] 64.56 29.31 65.80 49.54

Table 1: Comparison to the state of the art with mAP@0.5 and mAP@0.7 measures on
DALY and JHMDB datasets. We report results for the fully-supervised variant of [23].

4.3 Results

In Table 1, our method shows an improvement over [23] on both DALY and JHMDB, of
3.21% and 3.05% respectively for mAP@0.5. A larger gain is obtained with mAP@0.7 on
DALY (9.74% for “Combination”), showing that our method is more accurate for action
localization in videos. All the results of [23] were obtained directly from the authors. For
AP@0.5, per event results emphasize the role of detecting and tracking multiple parts (see
Table 2). Compared to [23], we significantly improve the performance for actions such as
Applying make up on lips with 81.91% (vs 68.18% for [23]), Brushing teeth with 68.64%
(vs 57.61%). Videos of these actions are often close-up views, where the body is not fully
visible during all or part of the sequence. This makes computing feature correspondences
between frames more difficult for methods such as [23] which do not estimate the full-body
bounding box. The difference between the two methods is even more important for AP@0.7:
49.27% (vs 2.62%) for Applying make up on lips, 28.62% (vs 20.58%) for Brushing teeth.
Our human tubes estimate the position of the full body and infer the location of non-visible
parts. This provides a canonical region of support for aggregating local descriptors which
belongs to the same parts of the body. Although the method in [16] shows better results
on JHMDB, our method has the advantage of being scalable to larger datasets and longer
videos. It can also be applied in a weakly-supervised way.

Figures 2 and 3 show a selection of qualitative results. Although Figure 2 shows standing
persons, people seated are also well-detected. For example, for the Playing Harmonica event
in DALY, which contains videos of people sitting (34 examples) and standing (16), we ob-
serve a significant improvement: over 1.8% and 31% for AP@0.5 and AP@0.7 respectively.
Figure 3 compares our tubes with those extracted by [23], showing that our method better
handles close-up views and occlusions.

Influence of part trackers. Figure 4 shows the mean average precision of our method when
varying the number of parts being tracked when building our tubes. The gain of adding parts
is particularly significant with AP@0.7 for JHMDB. For AP@0.5, two-part tracking gives
the best results because videos are short and viewpoint changes are limited. For AP@0.7,
tracking a maximum of four parts improves average precision significantly. On average,
we obtain an mAP of 54.46%, with an improvement of 4.92% over [23]. The results for
a few specific actions highlight the effectiveness of our tracking. For example, the wave
action has an average precision of 32.49% with 1-part tracking, and 49.92% when tracking
4 parts. Videos of this action contain two different points of view: a “full-body” point of
view, and a “torso” point of view, making the use of full-body tubes relevant and effective. A
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Classes [23] Ours
AP@0.5 | AP@0.7 | AP@0.5 | AP@0.7

ApplyingMakeUpOnLips | 68.18 2.62 81.91 49.27
BrushingTeeth 57.61 20.58 68.64 28.62
CleaningFloor 88.54 72.56 86.13 66.85
CleaningWindows 71.37 35.25 78.13 53.05
Drinking 44.10 13.99 36.77 24.86
FoldingTextile 58.90 35.35 60.77 15.94
Ironing 78.28 39.38 82.52 29.68
Phoning 52.06 25.05 63.41 34.19
PlayingHarmonica 68.36 26.93 70.18 58.12
TakingPhotosOrVideos 52.19 21.36 49.42 29.95
Mean 64.56 29.31 67.79 39.05

Table 2: Per-event results on the DALY dataset of our method and [23]. The results of our
method correspond to the one using five parts for human tracking (see Section 3.2).

similar observation can be made with the climb stairs action (“full body” and “legs” points
of view), with a gain of 8.27% (50.80% with single-part tracking, 59.07% with 4 parts), and
also for the throw action, with a significant number of upper-body and head videos (18.74
% with single-part tracking, 45.90% with 4). On the contrary, the walk action shows better
results with a single-part tracker (67.56%, compared to 64.59%) because the body of the
person walking is fully visible in all the videos, and using the full-body class suffices. On
the DALY dataset, a five-part tracker gives the best results. This is partly due to DALY being
a much more challenging dataset than JHMDB.

Influence of fully-body tubes. Figure 5 compares the performance of part detectors that
regress to full-body (including occluded or truncated regions) vs those that regress only
to visible regions (i.e., non full-body). Building non full-body tubes decreases the perfor-
mance, for example, from 68.85 to 63.14 on JHMDB, from 67.79 to 57.97 on DALY for
AP@0.5. It confirms our idea that building full-body tubes instead of the standard ones are
well-adapted for action localization and classification, and can: (1) establish better feature
correspondences, and (2) better exploit techniques such as spatial pyramid matching (SPM)
for recognition tasks. Additional experiments show that SPM is more effective with dense
tracks when considering our full-body tubes (+3% mAP) vs cropped and mis-aligned tubes
from [23] (+1%). In essence, such an “amodal completion” defines a better reference frame
for features (spatio-temporal grid is more adapted as person-centric), and results in better
performance in the context of action localization.

Influence of keypoints. The results in Figure 6(a) highlight the importance of keypoint
based proposal generation. We compare our full method, which uses keypoints for selecting
parts proposals (refer Section 3.1) with a variant that considers a proposal as positive if its
overlap with ground truth is in the range of 0.2 and 0.6, i.e., without using keypoints. The
performance of this no-keypoint variant is lower than our full method: 65.87 vs 68.85 on
JHMDB, and 67.22 vs 67.79 on DALY.

Analysis of full-body box generation. We simulated partially-occluded human poses on the
LSP dataset for this analysis. Given a full pose, we successively remove the lowest keypoint
in the human pose/skeleton, then the two lowest keypoints, and so on. We then estimate the
full-body box with our method for each of these simulated incomplete poses, i.e, the box
which frames the full estimated pose. The effectiveness of this estimation is measured by
comparing it with the groundtruth box. We do this experiment by removing successively
the highest, the left-most, and the right-most keypoints. Results are shown in Figure 6(b).
Full-body boxes estimated with 9 out of the 13 keypoints (which corresponds to missing legs
for the “lowest" experiment, and missing head and shoulders for the “highest" experiment)
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Figure 6: (a) Influence of keypoint based proposal generation. (b) Mean IoU of our full-
body box generation method and groundtruth boxes on the LSP dataset, with respect to the
number of visible keypoints.

gives a mean IoU over 0.7 with the groundtruth in all the four cases. With only 4 out of 13
keypoints, the IoU remains relatively high (between 0.5 and 0.6).

Analysis of annotations. Although our method shows state-of-the-art results on action lo-
calization, it suffers from an annotation bias. Our human tubes frame the full body, including
hidden parts. For the Ironing event in DALY, legs are frequently hidden by ironing boards
(see Figure 1 with two examples of DALY videos where the ironing event occurs), and the
annotations are focused on visible parts of the body, i.e., the torso and arms. Consequently,
the ToUs between our tubes and annotations suffer from the fact that they do not cover the
same parts of the actors. To estimate the impact of this annotation bias, we re-annotated
the groundtruth bounding boxes in all Ironing sequences from DALY taking into account
the hidden body parts. We then computed the AP@0.5 and AP@0.7 with dense trajectories
and CNNs. With these new annotations, we obtain an average precision of 85.2% (45.55%
for AP@0.7), whereas average precision with original annotations is 82.52% (29.68% for
AP@0.7). The method in [23] obtains an average precision of 78.28% (39.38% for AP@0.7)
with the original annotations. The experiment shows that the classical way of annotating hu-
mans in computer vision datasets, i.e., annotating only visible parts, is not ideal to correctly
evaluate our full-body tube extractor. However, our results show significant improvements in
action localization in a semi-supervised way. Although we train our part detector for people
detection, it can be extended to all objects. The main point is to have a training dataset with
annotations for the full object, i.e., taking into account hidden parts. Our part detector can
also be used with tracking by detection algorithms [19].

5 Conclusion

We proposed a novel full-body tube extraction method based on a new body part detector.
These detectors are specific to body parts, but regress to full-body bounding boxes, thus
localizing the person(s) in a video. Our tube extraction method tracks several human parts
through time, handling occlusions, view point changes, and localizes the full body in any of
these challenging scenarios. We showed that using our full-body tubes significantly improves
action localization compared to methods focusing on tubes built from visible parts only, with
state-of-the art results on the new challenging DALY dataset.
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