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Abstract

Dynamic Vision Sensor (DVS) is a kind of asynchronous sensor which can capture
visual information with low power consumption. Encouraged by the superior properties
of DVS, we propose a novel object detection method for DVS. The imaging of DVS is
highly related to the object motion speed. For sparse events induced by slow motions,
directly applying existing object detection methods cannot obtain reliable features, lead-
ing to loss in performance. For this issue, we introduce a new model to extract motion
invariant features for object detection using DVS, namely recursive adaptive temporal
pooling. The model works in a recursive manner and adaptively integrates features in
varied time interval into a holistic representation for current time-step with respect to the
motion speed. The pooled features are then fed into a detection sub-network to produce
the final results. Our framework is end-to-end trainable and is highly efficient benefitting
from the recursive manner and the characteristics of DVS data. Our method is evalu-
ated on a large DVS dataset with about 100k ground-truth images and compared with
the state-of-the-art methods. Experiments demonstrate the effectiveness and efficiency
of our method.
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It may be distributed unchanged freely in print or electronic forms.
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(@) )

Figure 1: (a) (e) are the spatial-temporal volume of the same event stream, with each dot
representing an event. The motion in the stream is slow at the first and gets fast at the end.
(b)(c)(d) are DVS images with certain integration time interval. With the same integration
time interval, the contours of the hands show clearly for fast motion (b) while very sparse
events are generated for slow motion (c). However, within a longer time interval, the contours
of the hands in slow motion become clear as shown in (d).

1 Introduction

Object detection is a fundamental topic in computer vision and plays an important role for
a lot of applications such as auto driving, drone, smart home assistant and gesture based
natural UI systems. For practical applications, power-efficient camera, algorithms with real
time processing capability on power-efficient embedded processor and robust performance
are crucial for widespread deployment.

Recently, Dynamic Vision Sensor (DVS) [2, 17] has gained more attention because of
their potentials for computer vision tasks [1, 16, 23, 29, 30]. Inspired by human vision, DVS
efficiently encodes visual information by recording pixel-level changes caused by move-
ments in a scene instead of intensity images, and generates a stream of asynchronous events
in microsecond precision. An image-like representation of DVS can be generated by accu-
mulating events over a fixed time interval (Fig.1). Compared with conventional RGB sensor,
DVS has much higher temporal resolution, providing a feasible way to track object in rapid
motions. Moreover, its power-efficiency and sparse representation make it possible to devel-
op highly efficient computer vision solution. All the above form its nature advantages for
object detection.

Along with the superior properties of DVS, the event distribution of same object dra-
matically varies by different motion speed, as demonstrated by Fig.1. Within a fixed time
interval, while the contour of hand in fast motion shows clearly, the hand in slow motion
generates very sparse events. The information carried in the latter case is rather limited and
it is hard for existing object detection methods [6, 7, 9, 18, 21, 22] to extract reliable feature
for detection, leading to a loss in performance. However, the information of object for de-
tection is adequate in DVS stream, only it spreads in a varied interval of temporal dimension
with respect to the motion speed, as shown in Fig.1(b)(d). This suggests that it is crucial
to exploit information in both spatial and temporal dimensions. Several methods have been
proposed to incorporate temporal information for object detection [8, 12, 13]. However, they
are based on a multi-stage framework. Within the multi-stage framework, it is hard to recov-
er the errors in first stage especially when the detection bounding boxes output by first stage
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is not reliable.

In this paper, we aim to improve the detection performance for DVS by extracting motion
invariant features. More specifically, for detection at each time-step, we extract features
from a spatial-temporal volume using temporal pooling, as a holistic representation of its
information. The temporal interval of the spatial-temporal volume should be dynamically
determined with respect to motion speed. Meanwhile, to prevent importing ambiguity when
aggregating information, the spatial misalignment cross frames caused by object motions
should be considered.

Based on the above insights, we propose a novel end-to-end neural network model for
object detection using DVS, named as Recursive Adaptive Temporal Pooling (RATP). It is
designed to recursively pool the feature maps of successive images with a predicted weight
map which indicates the consistency of the features being pooled at each spatial location.
There are three components in our model. First, a feature map is extracted from each image
using a feature extraction sub-network. Then, an adaptive temporal pooling module (Fig.2)
is used to recursively pool the extracted feature maps according to a weight map predicted
by a Multilayer Perceptron (MLP) network. At last, the pooled feature map is fed into a
detection sub-network that produces final detection results. All the above three components
are integrated in one deep neural network, so it can be optimized in an end-to-end manner.
The major contributions of this paper are as follows:

1) We propose a novel adaptive temporal pooling module that (i) adaptively pools feature
maps from successive images together, and produces motion invariant feature from DVS
stream, and (ii) works in a recursive manner, i.e. requires less memory and computation cost
at test time.

2) Based on the adaptive temporal pooling module, our object detection solution pro-
posed for DVS is (i) end-to-end trainable along with DVS streams, the final objective of
classification and localization, and (ii) efficient benefitting from the recursive manner of our
module and the superior properties of DVS.

2 Related Work

Object Detection  Object detection has obtained a significant boost benefiting from the
rapid development of deep CNN in recent years [3]. Girshick et al. proposed R-CNN [7]
for object detection with region proposal generation [25], CNN feature extraction, and region
classification. For acceleration, Fast R-CNN [6] directly extracts the features of image patch-
es from feature map of input image using ROI pooling, instead of feeding each image patch
into CNN independently. For further speedup region proposal generation, Faster R-CNN
[22] uses Region Proposal Network (RPN) to generate region proposals with convolutional
features shared with Fast R-CNN.

Although great success has been achieved in object detection for still images, object
detection in video remains a challenging problem. In this field, most methods rely on the
off-the-shelf still-image object detector, thus are multi-stage pipelines. Han et al. [8] im-
prove the frame-level detection along sequence via a re-scoring strategy. Kang et al. [13]
generate tubelet proposals by propagating predicted bounding boxes along the time axis us-
ing tracking algorithm [26], and use a temporal convolutional network to improve detection
results along the tubelets. In [14], Kang et al. propose a tubelet proposal network for gen-
erating tubelet proposals with better quality and efficiency. The tubelet features are then fed
into LSTM for classification. In contrast, Our adaptive temporal pooling module exploits
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temporal information in feature-level and is end-to-end trainable.

Object Recognition with DVS  Several methods are proposed to utilize temporal infor-
mation for object recognition with DVS. Orchard et al. [20] propose a spiking hierarchical
model which uses spike timing to encode the strength of neuron activation. Lagorce et al.
[19] use a hierarchical time-surface feature extraction technique to build features using both
spatial and temporal information. However, the problem that object appearance is dependent
on motion speed is not addressed. The method proposed in [5] uses a dynamic time window
with fixed number of events to eliminate the effect of motion speed on object appearance.
But it cannot work when multiple objects move in different speed.

Temporal Pooling In computer vision, the idea of temporal pooling usually involves a
layer in CNN used to aggregate frame-level features into a video-level feature. It is mainly
used to convert videos with varying frame length into a fixed-length CNN feature represen-
tation which is convenient for further processing [15, 27]. In [4], temporal rank pooling is
proposed to capture time varying information in videos for better classification. Our method
is the first to utilize temporal pooling to handle the issue in object detection for DVS.

In addition, our framework has similar structure with the LSTM network [10]. The
difference is that LSTM is designed to encode the temporal dynamics in video sequences,
while our network is for learning the motion invariant feature for object detection with DVS.

3 Proposed Method

We now describe the proposed method in detail. The whole network consists of three ma-
jor components: first, a convolutional sub-network is applied to extract feature map of each
frame independently; then, an adaptive temporal pooling module is used to extract a repre-
sentation robust to motion speed by aggregating feature maps of previous frames adaptively
in a recursive manner; finally, classification labels and object bounding boxes are predicted
by a detection sub-network based on the pooled feature map at each time-step.

3.1 Feature Extraction Network

To fully take advantage of the compact representation of DVS data, we design a computa-
tionally efficient network for feature extraction.

Compared to conventional dense RGB images, DVS images are sparse and binary. In
DVS, all the regular, unchanging values are eliminated, leaving only the data with salien-
cy changes, such as edges and salient movements. It is approximately as a regular image
going through a high-pass filter then being binarized, leaving only mid and high frequency
information need to be modeled. That means fewer kernels are required to represent DVS
images than regular images. Additionally, since there is a large portion of image regions that
are zeros in DVS image, applying kernels on those empty regions is non-informative. Large
stride at frontal layers helps to get a more compact and meaningful description of sparse
DVS image at early stage of the network, instead of spending much computation resource on
the noisy details. Based on above observations, we design our feature extraction network as
shown in Table 1. The number of convolution kernels of each layer is smaller than those in
networks for RGB images. In first three layers, large strides greatly shrink the feature map,
reducing the computation complexity of following layers.
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Layers | Convl Pool Conv2 Conv3 | Conv4 | ConvS
Param | 8x8x8/4 | 4x4/2 | 4x4x12/2 | 4x4x12 | 4x4x16 | 4x4x64

Table 1: Network structure of feature extraction network.

pooled feature map

(a)

—> © > Pool f’—w ® —» Pool —f’—w ® » Pool L»

Figure 2: Row(a): feature map before adaptive temporal pooling. Row(b): original DVS
images. (c): feature map after adaptive temporal pooling and final detection result. Since the
hand in slow motion produces sparse events which are not discriminative from background
noises, the activations at ¢ are low (a) resulting detection failure. After adaptive temporal
pooling, the activations of hand region get enhanced (c) and detection succeeds.

3.2 Adaptive Temporal Pooling

Adaptive temporal pooling is the key module of our model. The structure of the module is
shown in Fig.2. The idea behind adaptive temporal pooling is as follows. DVS generates
events in terms of contrast changes. It produces continuous response to rapid motions but
very sparse response for slow motions. To mitigate this problem, adaptive temporal pool-
ing module dynamically aggregates information from multiple frames within a varied time
interval with respect to motion speed using pooling operation, and produces a holistic fea-
ture that is invariant to motion speed. A weight map is used to indicate the contribution
from previous frames at each spatial location, to prevent inducing ambiguity from spatial
misalignment. More specifically, at each location, the weight should be a small value if the
feature of current frame is discriminative from the previously pooled feature; otherwise a
large weight is used. We note that the weighted pooling behaves similarly to these models
that based on attention mechanism [28]. It focuses on the relevant temporal range within
DVS stream to detect target objects. The difference is that our model works in temporal di-
mension instead of spatial dimension, and is in a recursive manner instead of putting features
in memory buffer and predicting weights for all the features together.
Let us denote the feature maps input to adaptive temporal pooling module as {x;,x2,...,x7},

x, €RHW where t represents the index of frame and each x; is obtained by the feature
extraction sub-network x; = N4 (l;). The aim is to compute the aggregated feature map
FERCHW for each time-step. First, the weight map @, is computed using a weight predic-
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tion net based on the adaptive pooled feature f;_; at previous time-step and feature map of
current frame x;:

@y i :lep(ftfl,iaxl,i)' €))

Here, @y ;€(0,1) and i is the location indices of vectors in feature map. N,,;, represents a
MLP used to predict the each weight in @, with feature vectors at corresponding location in
f; and x;. The MLP can be efficiently implemented as a fully convolutional model consists
of 1x1 convolutional layers sequentially connected to each other with non-linear activation
layers alternating in between. The kernel number of convolution layer corresponds to the
number of hidden nodes of the MLP. A sigmoid layer is used at the end of the MLP to make
sure the value of weights is between 0 and 1. As input of the weight prediction net, we
use the residual of f; and x;, since residual gives better performance compared to simple
concatenation (Sec. 4.3).

Then, with the predicted weight map, a new pooled feature map f; is computed by pool-
ing the previously pooled feature map f;—; and the feature map corresponding to current
frame x;. The formulation is

fr=pIs(fi-1,0),%]. 2

Here, s(-) is a function that scales the values in pooled feature map f;_; with predicted
weight map @,. The weight at a specific spatial location is shared for all the channels of the
feature map f;_;. And, p(-) represents the pooling function.

3.3 Training and Inference

With the feature map extracted from feature extraction net and adaptive temporal pooling,
we follow the state-of-the-art Faster-RCNN detection framework and train our model in
the approximate joint training scheme. For both RPN and Fast-RCNN, the loss function is
defined as summation of the cross-entropy loss and the box regression loss L(s,t, y,.4) =
Lis(s,¢*) + Afc* > O]L,eg(t,t*). Here ¢* is the ground-truth label, L (s,c*) is the cross-
entropy loss for classification, L., (z,1*) is the bounding box regression loss as defined in
[22], and ¢* represents the ground truth box. [¢* > 0] is an indicator which equals to 1 if the
argument is true and O otherwise.

In inference phase, our RATP model loops over all the frames of DVS stream in an online
manner and predicts detection labels and bounding boxes at every time-step. At each time-
step, the incoming frame first goes through the feature extraction net. Then the extracted
feature map, together with the pooled feature map from previous time-step, is input into the
temporal pooling module and pooled together with respect to the predicted weight map. At
last, the pooled feature map is fed into the detection sub-network producing final detection
results and saved in memory for the processing of next time-step. As for runtime complexity,
our method is computationally efficient. Compared to baseline detection model, the only
additional computational cost of our method is the MLP for weight map prediction and the
pooling operation in adaptive temporal pooling module.

4 Experimental Results

4.1 Dataset

Our DVS dataset for training contains 264 DVS sequences total 259,681 VGA size images.
There are one to seven persons in each sequence, making various gestures such as waving
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hand, circling hand, waving finger, etc. in various speed and under different illuminations.
The distance between target objects and DVS camera ranges from 1.5 to 3 meters with hand
size varying from 20 x 20 to 100 x 100. All of the sequences are with annotations of human
hand bounding box. In these DVS sequences, the hands represent dramatic deformation
while gesturing and the event distribution differs with hand motion speed and illumination
conditions. In addition, the recording scenario includes flicking monitors, light switching
and walking around people etc., which make background cluttered. All the above factors
make the dataset particularly challenging for detection task. The DVS dataset for testing
contains 93 DVS sequences which are shot in the same settings as training dataset.

Our dataset is created with the aid of well-developed Kinect sensor. The Kinect and DVS
are calibrated spatially and temporally, and an IR filter is attached in front of DVS lens to
filter out the IR light generated by Kinect. The hand segmentation on depth image of Kinect
is projected on DVS with its generation timestamp. The hand segmentation mask forms
a volume in spatial-temporal space, and its temporal length is set as the frame interval of
Kinect. The events within the volume are labelled as hand, and morphology transformation
techniques are used to recover the miss-labelled events if there is any. Based on the labelled
event stream, the dataset can generate images of DVS with ground-truth annotation within
any time interval, which is set to 20ms in this paper.

Although our dataset is created for human hand detection which is a special case for
general object detection, it is reasonable to infer that for deep network based algorithms,
methods effective for one specific object class possibly work for other object classes. Dataset
creation and method evaluation for general object detection will be our future work.

4.2 Experiment Settings

Evaluation Metrics  For each predicted bounding box, if the maximum IoU is larger than
an IOU threshold, it is regarded as a true positive, otherwise, it is a false alarm. We use
average precision and recall (P&R) and average IOU score of true positive (AvgIlOU) as the
video object detection metric, and evaluate all detection models in an end-to-end manner.

Implementation Details We take the full images in dataset in a resolution of 640 x 480
pixels as input. All the models in our experiments are trained from scratch with same ini-
tialization method, since DVS images are totally different from conventional RGB images
and there is no proper pre-training model for initialization. The training process starts with a
learning rate of le-4 using a stair case decay of 0.9 applied after 19 epochs. We use a batch
size of 32. For Adam, we use f1 = 0.9 and € = 0.1. For data augmentation, we mirror each
training image horizontally.

We use Faster-RCNN detection framework in our experiments. For feature extraction
sub-network, we use the structure shown in Table 1. For the computation-efficiency sake,
the MLP for weight map prediction is simplified and implemented as a one 1x1 convolu-
tional layer with sigmoid activation. The initial state of the pooled feature map is set as all
zero. The detection net is trained using the hard example mining technique [24] with ad-
ditional heuristic that ROIs without any event are removed in training stage since they are
non-informative. The fg-and-bg ratio is set as 1/3. Our method is implemented based on the
Caffe framework [11], and trained on NVIDIA K80 GPU.
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10U threshold 0.3 0.5 0.7 Average
(a) single-frame based FRCNN 73.69% | 73.37% | 66.55% | 71.20%
(b) Pooling with constant decay factor | 73.23% | 67.62% | 43.02% | 61.29%
(c) Adaptive pooling + concatenation | 79.49% | 78.30% | 68.01% | 75.27%
(d) Adaptive pooling + residual 79.73% | 79.11% | 69.26% | 76.03%

Table 2: Performance of baseline model and variants of our method.

Method P&ROU=3 T AvglOU Method P&ROV=3 T AvglOU
RATP 79.73% 0.663 RATP 79.73% 0.663
LSTM 79.78% 0.687 Seqnms 80.06% 0.810
RATP+LSTM 84.05% 0.682 RATP+Seqnms 86.53% 0.811
Table 3: Comparison with LSTM[10]. Table 4: Comparison with SeqNMSI[8].

4.3 Results

Ablation Study  We explicitly investigate different settings of the proposed method and
compare it with baseline model in this section. We perform a test on single-frame baseline
model first. For a fair comparison, we implement the baseline method using the same deep
network as our method except for the adaptive temporal pooling module. Then, we compare
the performance of the baseline with our method and its variants, as listed in Table 2. More
specifically, Model (a) is the baseline Faster-RCNN model trained and tested on single DVS
image. Model (b) is a degenerated variant of our method that uses a naive approach to pool
feature maps together. Instead of a predicted weight map, Model (b) imposes a constant de-
cay factor ®.€(0,1) on the pooled feature map (0.9 in our experiment), i.e. the weight map
oy in Eq.(1) and Eq.(2) is set to all @, at each time-step. Model (c) is the proposed recursive
temporal pooling model, but takes input of the MLP network N,,;, as the concatenation of
pooled feature f;_1; and feature from current frame x; ;. Model (d) is the recursive temporal
pooling model with residual of f; 1 ; and x; ; as input of N,,;,. It is obvious that the proposed
recursive temporal pooling model achieves significant improvement over Model (a)(b). For
Model (b), the average P&R decreases to 61.29%. This indicates that the spatial misalign-
ment across frames caused by motion can degrade the performance even with a decay factor.
Results of Model (c)(d) show that using the residual of feature maps further improves the
results. We conjecture that this due to the fact that residual reflects the difference of feature
map more explicitly and allows our model to identify the discriminations between previously
pooled features and the features of current frame.

We also visualize the effect of temporal pooling model as shown in Fig.3. From Fig.3
we can see that the feature map cannot be activated for the hand with sparse events based on
single frame, since the network cannot extract features discriminative enough to background
noises for the sparse hand. With temporal pooling module the feature map can get continuous
responses even at the sparse hand region by pooling features from previous frame together.
More qualitative comparison of baseline and our method is shown in Fig.3.

Comparison with LSTM  Our RATP module shares similar structure with LSTM [10].
Here, we explicitly investigate the difference of LSTM with our method. The comparison
results are shown in Table 3. For comparison, we replace the RATP module in Model (d)
with LSTM. More specifically, we build a LSTM at each spatial location in the feature map,


Citation
Citation
{Hochreiter and Schmidhuber} 1997

Citation
Citation
{Han, Khorrami, Paine, Ramachandran, Babaeizadeh, Shi, Li, Yan, and Huang} 2016

Citation
Citation
{Hochreiter and Schmidhuber} 1997


JIA LI ET AL: ADAPTIVE TEMPORAL POOLING FOR OBJECT DETECTION 9

Figure 3: (a) the original DVS images, (b) the weight map of RATP, (c) the visualization of
forget gates in LSTM[10], (d) feature maps before RATP, and (e) feature maps after RATP.
For all the visualizations, brighter pixel means larger value, otherwise smaller value.

and parameters of all the LSTMs are shared. The input of a LSTM is the feature vector at
corresponding spatial location of the feature maps that extracted from multiple successive
frames. As shown in Table 3, the performance of LSTM model is slightly better than our
RATP. However, they improve the baseline model from different aspects. While our model
extracts a motion invariant representation for the target object, LSTM attempts to model
the dynamic structure of the motion. In Fig.3, Fig.3(b) visualizes the predicted weight map
of our RATP module, and Fig.3(c) visualizes the value of forget gate in the LSTM which
works similarly with the weight map of RATP. It is obvious that for the regions that hands
in fast motion, the weight map in our model tries to filter the impact from previous frame
out to prevent importing ambiguity by aggregating misaligned features. By contrast, LSTM
emphasizes those regions, as the feature vectors from the motion region are required for
modelling motion dynamics. Also, we train a model that combines our RATP with LSTM by
stacking RATP on top of LSTM as two sequential layers. It further improves the performance
to 84.05%, showing that the information modelled by LSTM and our model is different and
complementary.

Comparison with Seq-NMS  We further compare our method with the state-of-the-art
method proposed for task of object detection in video. While our method aims to extract
more reliable features for target object from DVS stream, Seq-NMS [8] attempts to refine
the given object candidate boxes by exploiting temporal constraint. In Table 4, we show the
results with our method, Seq-NMS, and their combination. Seq-NMS improves the baseline
by large margin, showing its effectiveness. However, the integration of our RATP module
with Seq-NMS obtains the largest gain, and the performance is further improved to 86.53%,
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Figure 4: Object detection results from two different test sequences. In each pair of rows, the
top row shows the detection results of baseline model and the bottom row shows our method.
In baseline model, the hands in slow motion often missed since they produces very sparse
events, while our method performs better for these cases.

halving the error rate of baseline.

Runtime Analysis = We test the runtime of our method on single Core of Intel i5-4590. By
fully taking advantage of the superior properties of DVS, our method can achieve a speed of
11.6ms per frame. That means it is feasible to apply the whole detection system with DVS
and our detection method to applications with embedded systems.

5 Conclusion and Future Work

This paper proposes an efficient, end-to-end object detection method for DVS. Our method
pools features within varied time interval together and generates features invariant to motion
speed. Since its improvement is in feature level, it can be geared to existing deep neural
network based detection method as a complementary technique to further improve detection
performance. Experiments on a large DVS dataset demonstrate its efficiency and effective-
ness. For next work, the DVS features will be further investigated with information carried
in polarity and timestamp in DVS events. Also, currently we perform experiments on DVS
dataset for hand detection as a special case of general object detection. As the next step we
plan to build a more general dataset with objects in more categories for further evaluation.
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