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Abstract

This paper presents a novel end-to-end 3D fully convolutional network for salient
object detection in videos. The proposed network uses 3D filters in the spatiotemporal
domain to directly learn both spatial and temporal information to have 3D deep features,
and transfers the 3D deep features to pixel-level saliency prediction, outputting saliency
voxels. In our network, we combine the refinement at each layer and deep supervision
to efficiently and accurately detect salient object boundaries. The refinement module
recurrently enhances to learn contextual information into the feature map. Applying
deeply-supervised learning to hidden layers, on the other hand, improves details of the
intermediate saliency voxel, and thus the saliency voxel is refined progressively to be-
come finer and finer. Intensive experiments using publicly available benchmark datasets
confirm that our network outperforms state-of-the-art methods. The proposed saliency
model also effectively works for video object segmentation.

1 Introduction

Salient object detection (SOD) is useful for high-level tasks in computer vision such as action
recognition, video re-targeting, and video captioning. Recent advances using deep learn-
ing have demonstrated the superior performance in SOD[17, 20, 31]. Existing methods for
SOD, however, employ image-based deep models and apply them frame-by-frame to com-
pute saliency, resulting in failure of fully capturing dynamics of moving objects. This is
because deep features used there do not exploit temporal information over frames, which is
crucial in dealing with videos. Effectively integrating spatiotemporal information into deep
models to compute 3D deep features for SOD is still open to challenge.

To learn deep features of a video, 2D Convolutional Neural Network (CNN) treats multi-
ple frames as different channels and learns them by 2D convolution kernels, while 3D CNN
learns video frames directly by 3D convolution kernels[29]. The 3D CNN has better ability
to model both appearance and motion than the 2D CNN; thus the 3D CNN is well-suited for
video representation. Indeed, detected 3D deep features are generic and compact[29], and
they have been applied to some video analysis tasks. Particularly, 3D deep features learned
using 3D CNNs show good performance on action recognition[29], video classification[7],
video captioning[35], and visual attention[2]. 3D deep features, however, have not yet been
exploited for SOD.
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Figure 1: The architecture of the proposed DSRFCN3D model for an input video block with
the resolution of 112 x 112 x 4. The number in black outside a layer represents the size of
output signals of that layer, and the number in red at the bottom represents the number of
learning filters used in the layer.

For the recognition task, the feature map obtained from the last 3D convolution layer of
the 3D CNN is fed into some fully connected layers to obtain a good deep feature. How-
ever, this feature map is not suitable for the pixel-to-pixel prediction because its resolution
is much lower than that of the video block input. It has to be thus transferred to the pixel-
level domain. Similarly to image based deep models[26], upsampling layers are attached
into the 3D CNN to reconstruct object boundaries at the original input resolution, which
forms a 3D Fully Convolutional Network (FCN)[30]. The 3D FCN consists of two parts:
the deep feature computation from the input through the encoder network as the bottom-up
pass, and the task-based prediction using the deep feature through the decoder network as the
top-down pass. The 3D FCN indeed demonstrates effective end-to-end prediction on video
analysis problems such as video semantic segmentation, optical flow estimation, and video
coloring[30]. To improve the performance further, the skip-connection architecture is also
used for the 3D FCN. This architecture enables to merge spatial and temporal information
from low-level features in encoder network layers and high-level knowledge in decoder net-
work layers into higher layers. However, the skip-connection still have not fully succeeded
in demonstrating details of an object shape and contour. A refinement mechanism in cooper-
ation with the skip-connection is thus required for learning contextual information detailing
object shape and contour.

Motivated by observation above, we propose an end-to-end Deeply Supervised 3D Re-
current Fully Convolutional Network (DSRFCN3D) for SOD in videos (Fig. 1). Our DSR-
FCN3D consists of an encoder network, a decoder network, and a refinement. The encoder
network extracts a 3D deep feature, which involves both spatial and temporal information,
from an input video block. The decoder network computes the accurate saliency voxel from
the 3D deep feature by progressively improving the intermediate saliency voxel through su-
pervised learning at every hidden 3D deconvolution layer[15]. Here the saliency voxel is the
block with the same size as the input video block in which pixel-level saliency values are
computed at each frame in the block. The refinement, on the other hand, enriches the feature
map at each layer by combining skip-connection between the bottom-up and the top-down
passes and enhancement of contextual information through the recurrent convolutional layer.
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With these functions of DSRFCN3D, object shape appearance from encoder network layers
and semantic information from decoder network layers are effectively integrated into a fea-
ture map in terms of 3D deep features, which is then boosted up to finer and finer saliency
voxel prediction. Accordingly, our proposed network generates high-quality saliency voxels
and efficiently presents the boundaries of salient objects. Extensive experiments on sev-
eral challenging video saliency benchmark datasets show that DSRFCN3D outperforms the
state-of-the-arts on the SOD problem. We also applied our saliency model to video object
segmentation (VOS) to demonstrate how our model works even for other related tasks.

2 Proposed Method

The input of our network is a video block with size H x W x L, where H,W, and L are
the frame height, the frame width, and the temporal length (i.e., the number of frames),
respectively. Each frame of a video is resized into size 112 x 112, and the resized video
is first divided into 4-frame blocks, and then fed to DSRFCN3D to output saliency voxels
consisting of the 4-frame blocks with the same size as the input (i.e., 112 x 112) in which
saliency value at the pixel level is predicted at each frame.

2.1 Network Architecture

Figure 1 illustrates the detail configuration of DSRFCN3D. DSRFCN3D is composed of an
encoder network, a decoder network, and a refinement. The encoder network is adapted
from the C3D network[29], and we develop our decoder network using the idea of the 3D
deconvolutional network and deeply-supervised network[15].

Encoder Network:

We develop our encoder network using the C3D network[29]. Namely, we use only
3D convolution layers of five scale levels and remove all the fully connected layers. In our
encoder network, all the 3D convolution layers use filters with the size of 3 x 3 x 3, the stride
of 1 x 1 x 1, and the padding of 1 x 1 x 1, followed by the Rectified Linear Unit (ReLU)
activation layer[13]. The first two pooling layers have filters with the size of 2 x 2 x 1 and
the stride of 2 x 2 x 1, while the last two pooling layers use 2 x 2 x 2 filters with the stride
of 2x2x2.

Decoder Network:

Our decoder network has four deconvolution layers and one convolution layer. The first
two 3D deconvolution layers use filters with the size of 4 x 4 x 4, the stride of 2 X 2 x 2, and
the padding of 1 x 1 x 1. The last two 3D deconvolution layers have filters with the size of
4 x4 x 1, the stride of 2 x 2 x 1, and the padding of 1 x 1 x 0.

We enforce early supervision on all the hidden 3D deconvolution layers to improve the
network parameter learning stage. To do so, we employ the deeply supervised learning
scheme proposed in [15], which supervises both the hidden layers and the output layer to
alleviate the problem of vanishing gradients during training.

The last 3D convolution layer serves as a predictor where we use the filter with the size
of 3 x 3 x 3, the stride of 1 x 1 x 1, and the padding of 1 x 1 x 1.

We define the loss function of DSRFCN3D as follows:

M
L (eaw) = Epredict (Gawpredict) =+ Z Laeconv3D (97W((1YZC)0,W3D)a (D

m=1
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Figure 2: The detailed framework of our introduced refinement. The 3D convolution layer
in the skip-connection uses the filter with the size of 3 x 3 x 3 and the stride of 1 x 1 x 1.
The left block is the structure of the 3D Recurrent Convolution Layer (RCL3D) unit.

where M denotes the number of 3D deconvolution layers (in our case, M = 4), 0 is the
collection of all network layer parameters, and w denotes weights of the corresponding layer.
¢ is the binary cross-entropy loss, which can balance positive/negative classes between the
predicted saliency voxel S = (S;) and its corresponding ground truth § = (S;):

E;g{S,-log6<3‘\i)+(lSi)10g5(1§,-)}, )

where N = H x W x L denotes the size of a video block. & is the element-wise sigmoid
function.

Refinement:

Our refinement has as its input a saliency voxel in a deconvolution layer and its corre-
sponding convolution layer in the bottom-up pass. It integrates semantic information from
coarser-level layers to refine the saliency prediction. Its detail is explained below.

2.2 3D Recurrent Convolution Layer based Refinement

Our refinement is a combination of the top-down skip connection[23] and our proposed 3D
Recurrent Convolution Layer (RCL3D) (Fig. 2). It is capable of efficiently generating the
high-fidelity prediction.

The skip-connection incorporates object appearance information in the bottom-up pass
and semantic information in the top-down pass to generate a powerful feature map for
saliency prediction. Namely, the feature map at a deconvolution layer in the top-down pass
and the feature map in its corresponding convolution layer in the bottom-up pass are con-
catenated across channel dimension C to generate a stronger feature map. After this, the
contextual information is enhanced and accumulated in the feature map through iterating
the RCL3D unit. Note that before the concatenation, a 3D convolution layer with the filter
of size of 3 x 3 x 3, the stride of 1 x 1 x 1, and the padding of 1 x 1 x 1 is applied to the
bottom-up feature map to reduce its size in our implementation (cf. Fig. 2).

3D Recurrent Convolution Layer (RCL3D):

We first define notations describing the RCL3D. Given a feature map x €
with the first two elements corresponding to two spatial coordinates (i.e., vertical and hori-
zontal dimensions), the third denoting the temporal length (the number of frames), and the
fourth being associated with the channel-index (or called filter-index), respectively, each
Xijiewithl <i<H, 1< j<W,1</<L,and1 <c¢ < Cisa4D tensor.

RHXWXLXC
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Table 1: Number of videos used in our experiments.
Dataset 10-Clips[9] | SegTrack2[16] | DAVIS[22] | Total

Training 6 8 30 44
Testing 4 6 20 30
Table 2: Compared state-of-the-art methods and their classification.
target hand-crafted method deep learning
image DCL[17], DHS[20], RFCN[31]
video | LGFOGRI[33], RST[14], SAG[32], STS[36] None

Our RCL3D is an extension of RCL[19] to the spatiotemporal domain so that it becomes
a 3D filter. The left block in Fig. 2 depicts the structure of the RCL3D unit where z(7) is the
intermediate state at time 7, and g (f()) is the dynamic behavior function at time ¢t whose
output is recurrently used. The RCL3D is iterated with T time steps. We set 7 = 3 as in
[20][19].

The behavior of the RCL3D unit can be formally described as follows. Given a 4D tensor
xijic for the c-th channel of a unit located at position (i, j,I), x;j and the state ;. of the
RCL3D unit at time ¢ — 1 (the recurrent input at time ¢ — 1) are combined to generate z; ;. at
time #: .

zijic (t) = (W) xiji+ (WD) Thijp (£ — 1) + b, 3)

where x;;; denotes the feed-forward input from the layer in concern. ch ', W/, and b, denote

the feed-forward weights, the recurrent weights and the bias, respectively. ch , W/, and b,
are implemented using two 3D convolution layers with 3 x 3 x 3 filters.
The state of the RCL3D unit at time ¢ is given by the dynamic behavior function:

hijie (1) = & (f (zijic (1)) » 4)

where f is the ReLU activation function[13]: f;j. (t) = f (ziﬂc (t)) = max (zijlc (1), O), and
g is the local response normalization function[ 13] which prevents the states from exploding:

fijie (1)
min(C,c+P/2) B’
1+ % Z ft%'lc' (t)

¢’=max(0,c—P/2)

8 (fijic (1) = )]

where P denotes the size of the local neighbor channels involved in the normalization. In our
experiments, we set parameters & = 0.001 and § = 0.75, similarly to [20].

3 Experimental Results

3.1 Benchmark Datasets and Evaluation Criteria

We evaluated the performance of our method on three public benchmark datasets: 10-Clips
dataset[9], SegTrack2 dataset[16], and DAVIS dataset[22]. All the datasets contain manually
annotated pixel-wise ground-truth for every frame.

We evaluated the performance using F-measure[1], and Mean Absolute Error (MAE).
F-measure, which is computed based on the overlapping area between obtained results and
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Figure 3: Visual comparison of our method against the state-of-the-art methods. From
top-left to bottom-right, original image and ground-truth are followed by outputs obtained
using our method, LGFOGR[33], RST[14], SAG[32], STS[36], DCL[17], DHS[20], and
RFCN[31] in this order. Our method surrounded with red rectangles achieves the best re-
sults.

ground-truth, is a balanced measurement between precision and recall as follows: Fg =
( 1+[32)Precision X Recall

B2 x Precision+Recall
considered. MAE, on the other hand, is the average over the frame of pixel-wise absolute

differences between the ground truth and obtained saliency voxels.

‘We compute precision and recall at each frame in a video and then compute the average
over the video. Next, the mean of the averages over videos in a dataset is computed. F-
measure is computed from the final precision and recall. MAEs are computed in the same
way.

When binarizing results for the comparison with the ground truth, we used F-Adap[10],
an adaptive threshold 8 = u+n where u and 1 are the mean value and the standard deviation
of the saliency voxel. We also used F-Max[3], which describes the maximum of F-measure
scores for different thresholds from 0 to 255.

. We remark that we set $2 = 0.3 as used in [1] so that precision is more

3.2 Implementation and Training

Implementation platform:

We implement our method with C/C++, using Caffe[11] implementation of the C3D
network[29]. All experiments were conducted on a computer with a Core i7 3.6 GHz pro-
cessor, 32 GB of RAM, and GTX 1080 GPU. The average time for processing a video with
100 frames was about 1.13 seconds.

Training models:

We first built a pre-trained model on pseudo-videos to learn generic semantic information
of plenty of categories and then fine-tuned it on video datasets to focus on dynamics.

To generate pseudo-videos, we mixed four image datasets MSRA10k[5], ECSSD[27],
HKU-IS[18], and THUR15k[6], resulting in 16,000 images in total, and then converted each
image to a pseudo-video as follows. We used a window to crop an image and then randomly
slide the window across the image in the diagonal/off-diagonal direction to have more 3
crops from the image. Next, we aggregated the 4 clops into a 4-frame long pseudo-video.
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Figure 4: Quantitative comparison with state-of-the-art methods on three benchmark
datasets, using F-measure with different thresholds. Our method is denoted by DSRFCN3D
(thick blue).

Table 3: Quantitative comparison with state-of-the-art methods on three datasets, using F-
Adap, F-Max (higher is better), and MAE (smaller is better). The best three results are shown
in blue, green, and red, respectively. DSRFCN3D is marked as boldfaced.

Dataset 10-Clips SegTrack2 DAVIS

Metric F-Adap { F-Max{ MAE| F-Adap ff F-Max{ MAE | F-Adap f F-Max{ MAE|
DSRFCN3D 0.917 0.929 0.021 0.869 0.878 0.021 0.756 0.766 0.036
LGFOGR([33] 0.629 0.667 0.207 0.500 0.614 0.117 0.537 0.601 0.102
RST[14] 0.827 0.831 0.055 0.510 0.677 0.125 0.627 0.645 0.077
SAGI[32] 0.755 0.777 0.117 0.504 0.646 0.106 0.494 0.548 0.103
STS[36] 0.591 0.631 0.177 0.471 0.583 0.147 0.379 0.527 0.183
DCL[17] 0.935 0.937 0.031 0.734 0.750 0.060 0.664 0.711 0.067
DHS[20] 0.923 0.947 0.022 0.733 0.762 0.050 0.715 0.758 0.048
RFCN[31] 0.901 0.910 0.046 0.716 0.737 0.062 0.710 0.740 0.067

From each video dataset except for the DAVIS dataset, we chose randomly 60% videos
and mixed them into a larger dataset for training while the remaining videos were used for
testing each dataset (Table 1). This approach enables the trained model not to over-fit to a
specific small dataset. We remark that for the DAVIS dataset, we used the training set and
the testing set as in the DAVIS Benchmark[22]. We thus used 44 videos for training. We
split each video in the 44 videos into overlapping 4-frame blocks with stride 1, producing
in total about 3200 training samples. We note that we split each video in the test set into
non-overlapping 4-frame blocks with stride 4.

During the training process, a simple data augmentation technique through mirroring and
cropping was employed to avoid the problem of over-fitting. Similarly to [29], video blocks
are first rescaled to resolution 128 x 171 and then cropped to 112 x 112 at a random position
and horizontally flipped randomly.

To train our models, we used the Adam optimizer[12] with moments 3; = 0.9 and 3, =
0.999 and a weight decay of 0.0002. The size of each mini-batch is 1 due to our GPU
memory constraints. We first constructed our pre-trained model from the scratch by training
the pseudo-videos with 500k iterations. A base learning rate of 0.0005 with a 1/10th slow-
down every 100k iterations was used. Then the pre-trained model was fine-tuned on the
video dataset with 300k iterations. The learning rate was initially set to 10~ and divided by
10 at every 100k iterations.
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Figure 5: Comparison with the baseline methods using F-measure. Our (complete) method,
denoted by DSRFCN3D, is marked in thick blue.

Table 4: Quantitative evaluation of components using F-Adap and MAE. The best results
are shown in blue (higher is better for F-Adap and lower is better for MAE). Our (complete)
method, denoted by DSRFCN3D, is marked as boldfaced.

setting 3D RCL Deep 10-Clips SegTrack2 DAVIS
description | filter supervision | F-Adap f} | MAE || | F-Adap | | MAE | | F-Adap {} | MAE |}
DSRFCN3D \% \ \% 0.917 0.021 0.869 0.021 0.756 0.036
DSRFCN2D X Vv N 0.900 0.028 0.811 0.037 0.711 0.044
DSFCN3D \% X \ 0.872 0.030 0.834 0.025 0.729 0.040
RFCN3D \% \% X 0.767 0.062 0.682 0.045 0.569 0.061

3.3 Comparison with the State-of-the-Arts

We compared the performance of our proposed method (denoted by DSRFCN3D) with re-
cent state-of-the-art methods for SOD: LGFOGR[33], RST[14], SAG[32], STS[36], DCL[17],
DHS[20], and RFCNI[31] (cf. Table 2). We remark that we run original codes provided by
the authors with recommended parameter settings. For the methods developed for the still
image, we frame-wisely applied them to videos.

Figure 3 shows examples of obtained results. We qualitatively confirm that our method
produces the best results on each dataset. Our method can handle complex foreground and
background with different details, giving accurate and uniform saliency assignment.

Quantitative evaluations are shown in Fig.4 for F-measure and in Table 3 for F-Adap, F-
Max, and MAE. Our method exhibits the best performance on all metrics on Segtrack2 and
DAVIS datasets. Particularly, our method significantly outperforms the other methods on the
Segtrack?2 dataset. On the 10-Clips dataset, our method achieves the best performance in
term of MAE and is the third best method in term of F-Measure, slightly lower than those of
DCL[17] and DHS[20]. This can be understood that the performance on the 10-Clips dataset
has been already saturated and that improving the performance is even more difficult.

3.4 Detailed Analysis of the Proposed Method

To demonstrate the effectiveness of using 3D deep feature (3D filter), RCL, and deep su-
pervision, we compared DSRFCN3D with three baseline methods: deeply supervised 2D
recurrent FCN (DSRFCN2D) totally based on 2D filters, deeply supervised 3D FCN (DS-
FCN3D) not using RCL3D, and recurrent 3D FCN (RFCN3D) without deeply supervised
training. These baseline methods respectively evaluate effectiveness of our proposed 3D
features, our designed network structure, and our designed training of the network. The
baseline models were trained with the same settings as our DSRFCN3D.
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Figure 6: Boundary snapping[4] based video object segmentation framework using the
saliency map.

Quantitative evaluation results are illustrated in Fig.5 and Table 4. They indicate that
DSRFCN3D exhibits the best performance on all metrics on the three datasets. We see that
(1) the 3D filter effectively works in videos than the 2D filter, that (2) the refinement based
on RCL improves the performance of the network, and that (3) deep supervision effectively
trains the network.

4 Application to Video Object Segmentation

Video object segmentation (VOS) is a binary labeling problem aiming to separate foreground
objects from the background of a video[22], while salient object detection (SOD) aims to
detect and segment salient objects in natural scenes. Although VOS and SOD are different
tasks, SOD methods are beneficial for VOS when salient objects are main objects in scenes.
In this section, we demonstrate the applicability of our proposed method to VOS.

Figure 6 illustrates the framework for VOS using the saliency map[4]. In the first branch,
the output saliency map is binarized using the adaptive threshold mentioned in Section 3.1
to obtain the foreground mask. In the second branch, we implemented the object segmen-
tation method based on boundary snapping[4]. We first detected contours of foreground
objects using CEDN, the method by J.Yang et al. [34], and then applied the combinatorial
grouping method[24] to compute the Ultrametric Contour Map (UCM)[24], which presents
hierarchical segmentation. Superpixels were aligned by binarizing the UCM using thresh-
old T = 0.15. From the foreground mask and superpixels, we performed majority voting to
segment the object.

VOS methods are classified into two groups: one that is requiring the initial object mask
at the first frame, and the other that is not. The former is called unsupervised while the latter
is semi-supervised in the DAVIS Benchmark[22]. Since an initial object mask becomes a
strong prior for accurately segmenting objects in subsequent frames, we chose most recent
unsupervised methods for our comparison: CVOS[28], FST[21], and NLC[8]. Note that our
method (denoted by DSRFCN3D*) does not require any initial object mask.

We tested all methods on the DAVIS dataset[22], the newest dataset for VOS, and evalu-
ated results using measures in the 2017 DAVIS Challenge[25] (Region Similarity 7, Contour
Accuracy F, and Overall Performance O). For a given error measure, we used three different
statistics as done in [22]. They are the mean error, the object recall (measuring the fraction
of sequences scoring higher than a threshold 7 = 0.5), and the decay (quantifying the perfor-
mance loss (or gain) over time). Note that the results of the compared state-of-the-art VOS
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Table 5: Quantitative comparison with state-of-the-art VOS techniques on DAVIS dataset.
The best two results are shown in blue, green, respectively. Our methods is denoted by
DSRFCN3D*.

Metric Region Similarity (7) Contour Accuracy (F) Overall Performance (O)
Meanf Recall{t Decayl Meanf Recall{f Decayl Meanf}
DSRFCN3D*  0.651 0.782 0.000 0.609 0.726 0.027 0.630
CVOS[28] 0.482 0.540 0.105 0.447 0.526 0.117 0.465
FST[21] 0.558 0.649 0.000 0.511 0.516 0.029 0.535
NLCI[8] 0.551 0.558 0.126 0.523 0.519 0.114 0.537

Figure 7: Visual comparison of our method against the state-of-the-art VOS methods. From
left to right, original video frame and ground-truth are followed by outputs obtained using
our method, CVOS[28], FST[21], and NLCJ8] in this order. Our method surrounded with
red rectangles achieves the best results.

techniques are given in the DAVIS Benchmark[22].

Evaluation results are showed in Table 5, indicating that our proposed method outper-
forms the state-of-the-art methods. Our method exhibits the best performance on all metrics
at all statistics. Figure 7 shows examples of obtained results.

5 Conclusion

We proposed an end-to-end 3D deep neural network DSRFCN3D for SOD in videos. DSR-
FCN3D works in the spatiotemporal domain to detect 3D deep features, and possesses the
refinement mechanisms at each layer to strengthen features using those in the top-down
pass, which is in turn trained with supervision for progressively improving details of in-
termediate saliency. Experimental results on standard benchmark datasets demonstrate that
DSRFCN3D outperforms state-of-the-art methods.

We used 4-frames as the size of each video block in the experiments. This comes only
from the available memory size of GPU in our used PC. Investigating the appropriate size of
the video block with which DSRFCN3D performs best is left for future work. Exploiting the
network structure further to reduce the number of parameters and to utilize different sizes of
video blocks is also left for future work.
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