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Abstract

Pedestrian detection has achieved great improvements in recent years, while com-
plex occlusion handling is still one of the most important problems. To take advantage
of the body parts and context information for pedestrian detection, we propose the part
and context network (PCN) in this work. PCN specially utilizes two branches which de-
tect the pedestrians through body parts semantic and context information, respectively.
In the Part Branch, the semantic information of body parts can communicate with each
other via recurrent neural networks. In the Context Branch, we adopt a local competi-
tion mechanism for adaptive context scale selection. By combining the outputs of all
branches, we develop a strong complementary pedestrian detector with a lower miss rate
and better localization accuracy, especially for occlusion pedestrian. Comprehensive
evaluations on two challenging pedestrian detection datasets (i.e. Caltech and INRIA)
well demonstrated the effectiveness of the proposed PCN.

1 Introduction
Pedestrian detection, a canonical sub-problem in computer vision, has been extensively stud-
ied in recent years [5, 15, 19, 27, 28, 31, 32]. It has many applications such as video surveil-
lance [3] and intelligent vehicles [4]. Although pedestrian detection has achieved steady
improvements over the last decade, complex occlusion is still one of the obstacles. Accord-
ing to the statistic analysis in [9], over 70% of the pedestrians are occluded at least in one
video frame. For example, the current best-performing detector RPN+BF [31] attained 7.7%
of the average miss rate on Caltech [9] under the none occlusion setting. However, when
heavy occlusions are present, its performance is much worse than several state-of-the-art
algorithms. The detailed results are shown in Table 2.

Recently, DeepParts [27] was specially designed to cope with the occlusion cases in
pedestrian detection, by constructing an extensive part pool for automatic parts selection.
The well-designed parts are selected driven by data, requiring less prior knowledge of the
occlusion types than [20, 30]. However, the semantic parts cannot communicate with each
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other, which is very important for occluded pedestrian handling. As illustrated in Fig. 1,
when left hand is occluded, the corresponding part score may be very low. Consequently, the
summed score will also be low. The final result is failed to recognize the occluded pedestrian.
However, with semantic communication, the visible parts such as head and middle body can
pass messages to support the existence of left hand. Thus, the body part scores could be
refined by this semantic information communication and we are more likely to recognize the
occluded pedestrian successfully.

Inspired by ION [2], we introduce LSTM [26] for semantic parts communication due to
its extraordinary ability for learning long-term dependences. As shown in Fig. 1, the pedes-
trian box is divided into several part grids. Each part grid corresponds to a detection score.
With LSTM, those body parts could memorize the semantic information and communicate
with other parts to refine the score map. Moreover, different body parts need different infor-
mation from other semantic parts, therefore, we use the gates function in LSTM to control
the message passing.
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Figure 1: Motivation of our part branch. It’s
hard to classify the pedestrian box because of
heavy occlusion. With communication among
parts, the visible parts and invisible parts could
pass message bi-directionally and complement
each other to support the existence of pedes-
trian. Thus, the refined body parts score map
is prone to classify the pedestrian box.

On the other hand, a lot of researches
[2, 6, 11] stressed that context information
plays an important role in object detection.
However, they usually only extracted the
context information in a single scale, where
the scale is set by handcraft [6, 11]. Con-
sidering that different pedestrian instance
may need different context information, we
propose to use context regions with differ-
ent scales to extract the context informa-
tion. To adaptively select the context infor-
mation in different scales, a local competi-
tion operation (maxout [14]) is introduced
into our model. For example, the small
size pedestrian may need more context in-
formation due to low resolution, whilst the
heavy-occluded pedestrian may need more
context information than the no-occluded pedestrian.
Contributions. To sum up, this work makes the following contributions. (1) we propose
a novel part and context network (PCN) for pedestrian detection, which incorporates an
original branch, a part branch and a context branch into an unified architecture. (2) To
the best of our knowledge, we are the first to introduce the LSTM module into pedestrian
detection framework for body parts semantic information communication. (3) The context
branch can adaptively handle multi-scale context information in a data driven manner via a
local competition mechanism. (4) The results on Caltech and INRIA datasets demonstrated
the effectiveness of our proposed model PCN for pedestrian detection with a lower miss rate
and a better localization accuracy, especially for those occluded pedestrians.

2 Related Work
In this section, we mainly review related works in three aspects.

Part-based pedestrian detectors. Part-based approaches for pedestrian detection can
be classified into two categories: supervised manner and unsupervised manner. Mohan et
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al. [22] and Krystian et al. [21] firstly trained part detectors in a fully supervised manner and
then combined their outputs to fit a geometric model. Another category of part-based models
focus on unsupervised part mining, which does not require part labels. Wang et al. [29]
introduced deformable part model (DPM) to handle the pose variations by learning a mixture
of local templates for each body part. Lin et al. [17] proposed a promising framework
by incorporating DPM into And-Or graph. However, DPM [29] needs to handle complex
configurations. Recent work DeepParts [27] constructed an extensive part pool for automatic
parts selection, but its performance was restricted by the handcrafted part pool.

Multi-context features. Multi-context or multi-region features are useful in object de-
tection [2, 6, 11, 23]. Gidaris et al. [11] firstly introduced multi-region into deep convolu-
tional neural network and explored their role in detection. Bell et al [2] used spatial recurrent
neural networks to integrate muti-context information of RoI. Ouyang et al. [23] applied RoI-
Pooling from image features using different context regions and resolutions.

Deep models. Deep learning methods are widely used in pedestrian detection. For in-
stance, Hosang [15] demonstrated the effectiveness of the R-CNN pipeline [13] in pedestrian
detection. Cai et al. learned complexity-aware cascades for deep pedestrian detection [5] and
also proposed a unified multi-scale deep CNN for fast object detection [6]. Zhang et al. [31]
used a region proposal network (RPN) [24] to compute pedestrian candidates and a cascaded
boosted forest [1] to perform sample re-weighting for candidates classification. Du et al. [10]
introduced a soft-rejection based network fusion method to fuse the soft metrics from all net-
works together to generate the final confidence scores, achieving state-of-the-art results on
Caltech pedestrian dataset [9].

3 Our Approach
To take advantage of the body parts and context information for pedestrian detection, we
propose the part and context network (PCN). PCN specially utilizes two sub-networks which
detect the pedestrians through body parts semantic information and context information,
respectively.

3.1 Architecture
The detailed architecture of our pedestrian detector is shown in Fig. 2. Based on the frame-
work of Faster RCNN [24], our network detects objects through 3 detection branches: the
original branch, the part branch and the context branch. Each branch has different focus.
The original branch uses original box from RPN [24] so that it can focus on the full body
of pedestrian. The part branch is designed to make full use of semantic parts information
for precise classification, specially for pedestrians with heavy occlusion. Considering that
pedestrian instances may have different occlusion states, part score maps related to pedes-
trian box are modelled as sequence problem to communicate with each other. In the part
branch, pedestrian box is divided into several part grids (e.g., 3×3) after RoI-Pooling and
several convolution layers, where each part grid is associated with a detection score. Those
semantic scores are applied for pedestrian parts communication using LSTM. Since multi-
region, multi-context features were found to be effective for object detection [2, 11, 23], a
context branch is introduced to obtain context features with diversity among multiple scales.
Under the motivation that different pedestrian instances may need different context informa-
tion, we adopt a local competition mechanism (maxout) among multiple scales to increase
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Figure 2: Architecture of our model. The unified network consists of 3 subnetworks: a
part branch using LSTM for semantic information communication, an original branch using
original box from RPN, a context branch introducing maxout operation for region scale
selection.

the adaptive ability of context selection. The results produced by all detection branches are
weighted sum as the final detection scores. In our implementation, “â trous” [7] trick is used
to increase the feature map resolution.

3.2 LSTM for part semantic information communication

Our architecture for part semantic features communication in PCN is shown in detail in
Fig. 3. To get RoI features with different resolution, we place RoI-Pooling layer on top of
different conv layers. Features of conv3_3 and conv4_3 achieved best performance in our
experiments. L2-normalization is used following [18] to make training more stable. To get a
parts score map of the pedestrian instance, the RoI feature maps are passed through several
convolution layers to reduce channel dimension and resolution. Each branch gets a parts
score map with resolution of K×K (K=3 in Fig. 3) after the softmax layer. The score maps
have strong semantic information of pedestrian, for example the top-left grid indicates the
left-head-shoulder part. These parts score maps are concatenated for communication in the
next step.

To model coherence between semantic parts, we introduce LSTM for encoding their re-
lationships due to its long short term memory ability to model sequential data. We first
permute, flip, and reshape the parts score map to generate 4 sequences with different orders.
Then, the LSTM moves on parts score map along four directions: left, right, top and bot-
tom to encode parts and make semantic communication among them. As demonstrated in
Fig. 1 in Section 1 , when left hand is occluded, the corresponding part score may be very
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Figure 3: LSTM for part semantic communication. In a single pass, we extract RoI feature
from conv3_3 and conv4_3. Each descriptor is L2-normalized. We get parts score maps
with size of 3 × 3 through several conv layers. The body parts score maps after softmax
are concatenated, (flipped or not), reshaped, permuted and then sent to LSTM networks.
LSTM moves along four directions: left, right, top and bottom. Refined scores outputted
from LSTM are averaged to get the final scores of Part Branch.
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Figure 4: Maxout for adaptive context selection. As shown above, the purple box indicates
the original box of pedestrian, the red, green and blue box indicate the original context box
with a scale factor of 1.5, 1.8 and 2.0, respectively. After a convolution layer, each context
box is sent to maxout for competition and adaptive context selection. Class confidence and
bounding box are outputted as the result.

low. However, the visible part such as head and middle body can pass message to support
the existence of the left hand. Consequently, the body part scores could be refined by this
semantic information communication. The gate functions in LSTM are used to control the
message passing.

3.3 Maxout for adaptive context selection

Our architecture for adaptive context selection in PCN is detailedly shown in Fig. 4. Multi-
region, multi-context features were found to be effective in [2, 6, 11] . However, they only
extracted the context information in a single scale, where the scale is set by handcraft [6, 11].
Considering that different pedestrian instance may need different context information, we
propose to use context regions with different scales to extract the context information. For
example, small size pedestrian may need more context information due to low resolution,
and heavy-occluded pedestrian may need more context information than no-occluded pedes-
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trian. Similar philosophy was also figured out in generic object detection [23], which used
a chaining structure for multi-context mining. Our context convolutional feature maps are
extracted from multiple discrete scales, known as multi-context. In Fig. 4, 3 kinds of region
scale are enumerated for generating context box. Suppose the RoI has width W , height H,
and S is the context scale factor of the RoI. Thus, the context region has width W × S and
height H× S with the same center as the original RoI, where S = 1.5,1.8,2.1 respectively
for each context branch in our implementation.

We incorporate a local competition operation (maxout) into PCN to improve the adap-
tive context selection capability for various context features sources. Each sub-branch with
different context scale passes through RoI-Pooling layer to get a fixed-resolution (m×m)
object feature map. These feature maps of different data source are selected by maxout with
a data driven manner. Maxout [14] (element-wise max) is a widely considered operation for
merging two or multiple competing sources. Here, we follow the well-known structure of
NoCs [25]. When the maxout operation is used, the three feature maps (for the three context
scales) are merged into a single feature map with the same dimensionality. The convolu-
tion layers before each RoI-Pooling layer share their weights. Thereby, the total number of
weights is almost unchanged when using maxout.

3.4 Training Procedure

Since these branches differ a lot from feature extraction and expression, which could lead to
some instability during learning, we train our model by multiple stages.

Stage1: Jointly optimizing original branch and context branch. Original branch and
context branch could be jointly optimized mainly because they have the similar feature ex-
pression (different from part branch). Therefore, the gradients from the 2 branches could
be merged to the trunk in a stable way. The parameters W of original branch and context
branch are learned from a set of training samples. Suppose Xi is a training image patch, and
Yi = (yi, ti) the combination of its class label yi ∈ {0,1,2, ..K} and bounding box coordinates
ti = (tx

i , t
y
i , t

w
i , t

h
i ), we optimize W with a multi-task loss:

L(W ) =
M

∑
m=1

αmlm(Xi,Yi|W ), (1)

where M is the number of detection branches, and αm is the weight of loss lm. lm is a
multi-task loss combining the cross-entropy loss and the smoothed bounding box regression
[12, 24]. The optimal parameters W ∗ = argminW L(W ) are learned by stochastic gradient
descent.

Stage2: Pre-training the part branch to get parts score maps by the cross-entropy loss
Lcls(p(X),y) =− log py(X), where p(X) = (p0(X), ..., pK(X)) is the probability distribution
over classes. Part branch is pre-trained so that parts can focus on information communication
in Stage3. The model trained in Stage1 is fixed in Stage2 to save compute cost.

Stage3: Training the part branch for parts semantic information communication using
LSTM. Parameters trained in stage1 are fixed to save compute cost, while parameters trained
in Stage2 are finetuned in Stage3.
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Settings Description Settings Description

Reasonable 50+ pixels, Occ. none or partial Occ.partial 1-35% occluded
All 20+ pixels, Occ. none, partial or heavy Occ.heavy 35-80% occluded

Occ.none 0% occluded Over.75 Reasonable, using IOU=0.75

Table 1: Evaluation settings for Caltech pedestrian dataset [9].

4 Experiments

We evaluated the effectiveness of the proposed PCN on 2 popular pedestrian detection
datasets including Caltech [9], INRIA [8]. More experimental analyses on the effectiveness
of each component in our network are further given on the challenging Caltech dataset [9].

4.1 Datasets

Caltech. The Caltech dataset and its associated benchmark [9] are among the most popular
pedestrian detection datasets. It consists of about 10 hours videos (640×480) collected from
a vehicle driving through regular urban traffic. The annotation includes temporal correspon-
dence between bounding boxes and detailed occlusion labels. We use dense sampling of the
training data by 10 folds as adopted in [15]. 4024 images in the standard test set are used
for evaluation. The miss rate (MR) is used as the performance evaluation metric [9]. The
detailed evaluation settings following [9] are shown in Table 1.
INRIA. The INRIA pedestrian dataset [8], which is often used for verifying the generaliza-
tion capability of models, is split into a training and a testing set. The training set consists
of 614 positive images and 1,218 negative images. The testing set consists of 288 testing
images. Our model is evaluated on the testing set by MR.

4.2 Implementation Details

For RPN, we used anchors of 9 different scales, starting from 40 pixels height with a scaling
stride of 1.4×. Other hyper-parameters of RPN followed [12, 24, 31]. When training, 70k
iterations were run with an initial learning rate of 0.001, which decays 10 times after 50k
iterations. Model was finetuned from 16-layers VGG-Net. When testing, the scale of the
input image was set as 720 and 560 pixels on the shortest side on Caltech and INRIA datasets
respectively, we just selected top 50 boxes for proposals.
For PCN, we used the hyper-parameters following [16] to finetune our model from 16-layers
VGG-Net. The fourth max pooling layer was removed to produce larger feature maps in
all branches. “â trous” [7] trick was used to increase the feature map resolution and reduce
stride. Based on these settings, the parameter optimized model was used as our basic model
(RPN+FCNNopt ). When training, top 1000 boxes were selected as proposals, and 50k itera-
tions were run with an initial learning rate of 0.001 for 3 stages, which decays 10 times after
40k iterations. When testing, with the top 50 boxes from RPN, we used nms with 0.5 after
weight combined from different branches. Conv5’s channels are reduced to 256, while fc6
and fc7 are reduced to 2048, 512 respectively to reduce computation and memory burden.
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Methods Reasonable All Occ.none Occ.partial Occ.heavy Over.75

SCF+AlexNet [15] 23.3 70.3 20.0 48.5 74.7 58.9
DeepParts [27] 11.9 64.8 10.6 19.9 60.4 56.8
CompACT-Deep [5] 11.8 64.4 9.6 25.1 65.8 53.3
SAF R-CNN [16] 9.7 62.6 7.7 24.8 64.4 41.0
MS-CNN [6] 10.0 61.0 8.2 19.2 59.9 56.9
RPN+BF [31] 9.6 64.7 7.7 24.2 69.9 35.5
RPN+FRCNNopt [24] 12.1 65.4 10.5 24.0 64.9 48.5
PCN(Ours) 8.4 61.8 7.0 16.4 56.7 34.8

Table 2: Detailed breakdown performance comparisons of our models and other state-of-
the-art models on the 6 evaluation settings.
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11.2% SpatialPooling
13.3% SketchTokens
13.8% LDCF
14.5% SCCPriors
15.4% RandForest
17.3% ACF

(a) (b)
Figure 5: The results on two Datasets under Reasonable evaluation (legends indicate MR)
(a) Comparisons on the Caltech set; (b) Comparisons on the INRIA set.

4.3 Comparisions with State-of-the-art Methods
Caltech. Fig. 5. (a) and Table 2 show the results on Caltech (lower is better). We compare
our framework with several other state-of-the-art approaches [5, 6, 15, 16, 24, 27, 31]. Com-
pared with these approaches, our PCN obtained a miss rate of 8.4% on reasonable setting,
which is over 1.2 points better than the closest competitor (9.6% of RPN+BF [31]). In the
partial and heavy occlusion settings, our PCN achieved at least 3 points improvements than
DeepParts [27] which is specially designed for occlusion, demonstrating the effectiveness of
our PCN model for occlusion handling. Visualization of detection results by state-of-the-art
methods and our PCN model are shown in Fig. 6.
INRIA. Fig. 5. (b) shows the detection results on the INRIA datasets. Our PCN model
achieved a miss rate of 6.9%, comparable with the best available competitor RPN+BF [31].

4.4 Ablation Experiments
In order to figure out which component is working, we carried out the following ablation
experiments further.
A. Part branch In this subsection, we explore the effect of part branch. In PCN, part branch
divides the pedestrian box into several parts. Each part corresponds to multiple part detector
(RoI-Pooling from different layers). LSTM is introduced to encode the coherence between
parts and make semantic communication among them, which is crucial for occluded pedes-
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Figure 6: Comparison of pedestrian detection results with other state-of-the-art methods.
The first column shows the input images with ground-truths annotated with red rectan-
gles. The rest columns show the detection results (green rectangles) of DeepParts [27],
RPN+BF [31] and PCN respectively. Our PCN can successfully detect more partial or heavy
occluded instances with better localization accuracy compared to the other two state-of-the-
art methods.

trian detection. To verify this, we first added part detectors on the parameter optimized
basic model RPN+RFCNNopt , the detector scores of all parts were averaged for the final
score of part branch. As we can see, Base+Partavg has better performance than the Base
method, especially the performance of Occ.partial (24.0% vs 21.0%). However, the perfor-
mance of Occ.heavy increased a little, which indicates that simply splitting pedestrian box
to body parts to design part detector is not enough to recognize heavy occluded pedestrian.
When introducing LSTM for encoding the coherence between parts (Base+Part+LSTM), the
performance of Occ.partial and Occ.heavy improved from 21.0%/64.6% to 17.0%/58.9%,
respectively, showing that the communication of semantic parts is very important for pedes-
trian detection, especially for these heavy occluded instances.
B. Context branch In this subsection, we explore the effect of context branch. To reveal the
importance of context information in pedestrian detection, we added a context branch based
on the basic model. One scale context only uses the context information generated by win-
dow size of WS×HS, Table 3 shows the performance comparison when choosing different
context scales (Base+Context(S=x)), obtaining a MR of 9.8%/9.9%/9.6% for x=1.5/1.8/2.1,
respectively. This demonstrated that context plays a key role in pedestrian detection. In-
teresting, the performance using an IoU threshold of 0.75 (Over.75) increased a lot, the
improvement of localization accuracy may be caused by the context information and extra
bounding box regulator. For adaptive context selection, we introduced Maxout to integrate
context scale. Base+Context (Maxout) achieved a MR of 9.0%, better than those models
with single context scale. Because of length limited, we just listed 3 scales (x=1.5, 1.8, 2.1)
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Methods Reasonable All Occ.none Occ.partial Occ.heavy Over.75

RPN+FRCNNopt (Base) 12.1 65.4 10.5 24.0 64.9 48.5

Base+Partavg 10.1 62.8 8.1 21.0 64.6 39.0
Base+Part+LSTM 9.4 62.6 8.1 17.0 58.9 38.5

Base+Context(S=1.5) 9.8 63.5 8.1 19.4 60.1 38.0
Base+Context(S=1.8) 9.9 63.4 8.3 20.6 59.8 36.5
Base+Context(S=2.1) 9.6 63.5 8.2 17.8 59.9 36.1
Base+Context(Maxout) 9.0 62.6 7.5 17.5 57.5 34.6

PCN(full) 8.4 61.8 7.0 16.4 56.7 34.8

Table 3: Detailed breakdown performance comparisons of ablation experiments: the effect of
part branch and context branch. RPN+FRCNNopt : the parameter optimized RPN+FRCNN;
Base+Partavg: basic model add part detectors; Base+Part+LSTM: basic model add part de-
tectors and semantic parts communication; Base+Context(S=x): basic model add context
with single scale x (x=1.5,1.8,2.1); Base+Context(Maxout): basic model add context using
Maxout for adaptively scale selection.

for illustration.

5 Conclusion
In this paper, we proposed the part and context network (PCN). PCN specially utilizes two
sub-networks which detect the pedestrians through body parts semantic information and con-
text information, respectively. Extensive experiments demonstrated that the proposed PCN
is superior in detecting occluded pedestrian instances and achieving better localization accu-
racy.

Acknowledgement
This work was supported by the National Natural Science Foundation of China (61671125,
61201271, 61301269), and the State Key Laboratory of Synthetical Automation for Process
Industries (NO. PAL-N201401).

References
[1] Ron Appel, Thomas J Fuchs, Piotr Dollár, and Pietro Perona. Quickly boosting decision

trees-pruning underachieving features early. In ICML (3), pages 594–602, 2013.

[2] Sean Bell, C Lawrence Zitnick, Kavita Bala, and Ross Girshick. Inside-outside net:
Detecting objects in context with skip pooling and recurrent neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2874–2883, 2016.

[3] Muhammad Bilal, Asim Khan, Muhammad Umar Karim Khan, and Chong-Min
Kyung. A low complexity pedestrian detection framework for smart video surveillance
systems. IEEE Transactions on Circuits and Systems for Video Technology, 2016.



WANG ET AL.: PCN FOR PEDESTRIAN DETECTION 11

[4] Alberto Broggi, Alex Zelinsky, Ümit Özgüner, and Christian Laugier. Intelligent vehi-
cles. In Springer Handbook of Robotics, pages 1627–1656. Springer, 2016.

[5] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. Learning complexity-
aware cascades for deep pedestrian detection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3361–3369, 2015.

[6] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vasconcelos. A unified multi-
scale deep convolutional neural network for fast object detection. In European Confer-
ence on Computer Vision, pages 354–370. Springer, 2016.

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Semantic image segmentation with deep convolutional nets and fully connected
crfs. arXiv preprint arXiv:1412.7062, 2014.

[8] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 886–893, 2005.
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