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Abstract

Event cameras offer many advantages over standard frame-based cameras, such as
low latency, high temporal resolution, and a high dynamic range. They respond to pixel-
level brightness changes and, therefore, provide a sparse output. However, in textured
scenes with rapid motion, millions of events are generated per second. Therefore, state-
of-the-art event-based algorithms either require massive parallel computation (e.g., a
GPU) or depart from the event-based processing paradigm. Inspired by frame-based
pre-processing techniques that reduce an image to a set of features, which are typically
the input to higher-level algorithms, we propose a method to reduce an event stream to a
corner event stream. Our goal is twofold: extract relevant tracking information (corners
do not suffer from the aperture problem) and decrease the event rate for later processing
stages. Our event-based corner detector is very efficient due to its design principle, which
consists of working on the Surface of Active Events (a map with the timestamp of the lat-
est event at each pixel) using only comparison operations. Our method asynchronously
processes event by event with very low latency. Our implementation is capable of pro-
cessing millions of events per second on a single core (less than a micro-second per event)
and reduces the event rate by a factor of 10 to 20.

Multimedia Material
A supplemental video for this work is available on: https://youtu.be/tgvM4ELesgI

1 Introduction
Event cameras offer great potential for virtual reality and robotics to overcome the chal-
lenges of latency, dynamic range, and high speed. Inspired by the human eye, these cameras
respond to local, pixel-level brightness changes at the time they occur. These changes, called
“events”, are transmitted asynchronously and timestamped with micro-second precision. A
comparison between standard frame-based and event cameras is shown in Fig. 1(a). Since
each pixel is independent and can choose its own operating point, event cameras achieve a
very high intra-scene dynamic range (more than 140 dB). However, due to their fundamen-
tally different output (an event stream rather then a sequence of frames), standard computer-
vision algorithms cannot be applied to such data directly and new methods to deal with this
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(a) Standard vs Event Camera (b) Raw Event vs Corner Event
Stream

Figure 1: (a): Comparison of the output of a standard frame-based and an event camera
when facing a rotating disk with a black dot. The standard camera outputs frames at a fixed
rate, thus sending redundant information when no motion is present in the scene. Standard
cameras also suffer from motion blur during rapid motion. Event cameras instead respond
to pixel-level brightness changes with microsecond latency. Therefore, they do not suffer
from motion blur and do not report anything when everything is at rest. An animated version
of this figure can be found here: https://youtu.be/LauQ6LWTkxM. (b): The output of
our method is a corner event stream (green), which is here overlaid on the raw event stream
(gray) in space-time (time going upwards).

different way of encoding visual information (temporal contrast rather than absolute bright-
ness) should be devised. As event cameras have become commercially available only in
the last few years, e.g. the DVS [10] and the DAVIS [2], research on event-based vision is
a relatively new topic. The most recent sensor, the DAVIS, has a resolution of 240× 180
pixels and, in addition to the events, it also outputs standard grayscale images from the same
physical pixels (that we only use for visualization purposes in this work).

Certain applications of event cameras, such as image reconstruction [5, 6, 14] or video
decompression [3], require processing all events. However, many applications like visual
odometry or object tracking are known from standard cameras to work reliably on corners
alone. Corners are useful features as they are well localized, highly informative, and do not
suffer from the aperture problem. Additionally, they reduce an image (composed of millions
of pixels) to a few hundred measurements. Similarly, we aim at reducing the event stream to
a highly-informative corner event stream.

The first method for event-based corner detection was presented by [4]. They estimate
the optical flow by fitting planes to the Surface of Active Events (a map of the timestamp of
the latest event for each pixel) and searching for intersections. However, as plane fitting is
a costly operation, the number of events per second that can be processed is rather limited.
A more recent work [17] computes Harris corners on artificial frames generated from the
events. While this method shows convincing results, it is not computationally efficient due
to the underlying data structure and the required convolutions and matrix multiplications.

Other works focus on feature tracking in the event stream. However, they assume to
know the shape of the features a priori [9], or they extract features from the frame and
only track them using the events [16]. In [18], a probabilistic feature tracking algorithm
using Expectation-Maximization is presented. Similarly to [17], they detect Harris corners
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in artificial frames, but instead of using a binarized frame, they use the event density over a
temporal window.

Recently, several methods for camera tracking and visual odometry for event cameras
have been presented. In [7] a visual-odometry method was proposed that works in real time,
but requires a GPU. Instead of processing single events, EVO [13] accumulates events to
build artificial frames as an intermediate step. These works show that real-time performance
either requires massive parallel processing power (e.g., a GPU) or departing from the event-
based processing paradigm (i.e., each event can change the state of the system). In [8], a
visual-odometry algorithm using feature tracks was presented. They showed that feature-
based methods work efficiently on event cameras. However, they required frames to detect
corners and extract features before they could be tracked with the events.

In this paper, we present a fast method for corner detection in an event stream. Our
detector is very efficient due to its design principle, which consists of working on the Surface
of Active Events using only comparison operations, as opposed to plane fitting or computing
gradients by convolution, as previous works. Our method asynchronously processes event
by event with very low latency, thus preserving the characteristics of the event stream. It can
serve as a lightweight, low-latency preprocessing step for subsequent higher-level algorithms
such as visual odometry, object tracking, or recognition. Our implementation can process
more than a million events per second on a single core, and typically reduces the event rate
by a factor of 10 to 20.

The remainder of this paper is structured as follows. Section 2 describes our method,
which we evaluate and compare to previous work in Section 3. Results are discussed and
conclusions are drawn in Sections 4 and 5, respectively.

2 Method
Inspired by the FAST [15] corner detector for frames, we propose a corner detector for event
streams that only uses pixel-wise comparisons. FAST considers a pixel as a corner if n
contiguous pixels along a circle around the pixel of interest have all darker (or all brighter)
intensity than the center pixel plus a threshold (typically, n = 9 on a circle of radius 3 with
16 pixels). In event cameras, brightness is encoded in the form of temporal contrast. More
precisely, an event e = (x,y, t, pol) is triggered at a pixel (x,y) at time t if the (logarithmic)
brightness I reaches a predefined contrast threshold C (typically 15 %),

I(x,y, t)− I(x,y, t−∆t) = pol ·C, (1)

where t−∆t is the time when the last event at that pixel was triggered, and pol, the polarity
of the event, is the sign of the brightness change. Since visual information is represented by
time and there is no notion of frames for event cameras, we propose to operate on the Surface
of Active Events (SAE) [1], which is the function given by the timestamp of the most recent
event at each pixel:

SAE : (x,y) 7→ t. (2)

Figure 2 shows a temporal window of events, the Surface of Active Events, as well as an
intensity image for the same moment in time. Similarly to [17], we separate the events by
polarity and process them independently.

Since this continuously and asynchronously updated representation is fundamentally dif-
ferent from intensity images, several changes are needed to make a FAST-like detector for
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(a) Events over the last 33 ms. Pos-
itive events (white) and negative
events (black)

(b) Surface of Active Events (SAE).
Brightness represents time, from
past (dark) to present (bright)

(c) Intensity Image (absolute
brightness I(x,y) in (1))

Figure 2: Signal used for corner detection: the Surface of Active Events (SAE).

(a) Circles of radius 3 and 4 pixels (b) Visualization of Surface of Active Events (SAE)

Figure 3: Proposed Method. We compare the timestamps of the latest event of the pixels on
two circles (red and blue) around the current event (in black). (a): The inner (red) and outer
(blue) circle around the current event (black). (b): Visualization of the Surface of Active
Events (SAE) around the current event (black) and of the circles used for the timestamp
comparison. In this example, the event under consideration (center pixel) is classified as
corner.

event cameras. First, we do not need to iterate over all pixels, but only check the current
event using its local neighborhood. This check is performed asynchronously at the moment
the event arrives. Second, the pixel values represent timestamps instead of intensity values
and since the current event is considered the center pixel of the local neighborhood it always
has the highest timestamp on the SAE. Therefore, comparisons of the pixels on the circle to
the center one (as in FAST) are non-informative, and a different spatial comparison pattern
(between pixels on the circle only) is required.

Our method analyzes the distribution of timestamps around the current event to decide
on the presence of a corner. A moving corner will create, locally, a pixel map of timestamps
such as that in Fig. 3(b), with two clearly separated regions (recent vs. old events, i.e., high
vs. low values). Hence, we detect corners by searching for contiguous pixels with higher
timestamps than the rest. We use circular segments for isotropic response and for efficiency
(checking fewer pixels than the whole neighborhood). In contrast to existing methods [17],
we completely avoid the computation of derivatives, which are expensive and amplify noise.

More specifically, we define a patch (local spatial neighborhood) of the SAE around the
current event. In this patch, we focus on the pixels on two centered, concentric circles of
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radius 3 and 4 as shown in Fig. 3. Along each circle, the algorithm searches for segments
of contiguous pixels (arcs) that are higher (i.e., they have a more recent timestamp) than
all other pixels on the circle. For the inner circle (red), we search for a segment of length
between 3 and 6 (pixels). For the outer circle (blue), we search for a segment of length
between 4 and 8. If we find such segments on both circles, we consider the current event to
be a corner event. In the example in Fig. 3(b), the inner circle (red) and the outer circle have 5
and 6 contiguous pixels that are all higher than the other pixels along the circle, respectively.
Therefore, the event in the center pixel is considered a corner.

Experimentally, we found that using additional inner circles (of radius 1 or 2) does not
improve detection quality. We suspect that sensor noise is the main issue why corners in
current event cameras cannot be located more precisely (feature-track methods [16, 18] also
report localization errors in the range of 2 pixels). However, we also found that only using the
inner circle of radius 3 provides significantly worse quality compared to using both circles.
As can be seen from Fig. 3(a), circles of radius 3 and 4 constitute less than half of the pixels
(36/81 ≈ 44%) in the 9× 9 pixels patch. However, it is this region that we experimentally
found to provide the most relevant information for corner detection and localization: larger
circles do not provide good localization and smaller circles are not reliable to detect corners
as they are more sensitive to sensor noise.

3 Evaluation
To evaluate the performance of our method, we first describe how we compute ground truth.
Then we review the current state-of-the-art Harris detector [17] and describe our improve-
ment. Finally, we compare the detection performance and runtime of Harris and our method
on the Event-Camera Dataset [12].

3.1 Ground Truth
3.1.1 Ground Truth using Frames

Establishing ground truth using the Lucas-Kanade tracking algorithm [11] on the frames of
the DAVIS and interpolating between the frames suffers from severe limitations: (i) dynamic
range: due to the limited dynamic range of the frames (around 55 dB), no corners are detected
and tracked in over- and underexposed areas of the image (see Fig. 4(a)), (ii) frame rate: due
to the limited frame rate of the sensor (around 25 Hz), tracking is lost in high-speed scenarios
and linear interpolation is no longer a good approximation (see Fig. 4(b)), and (iii) corner
interpretation: not all elements perceived as corners in the event stream are also recognized
as corners in the images, and vice versa, even though they are repeatably detected and well
tracked (see Fig. 4(c)). We experimented with different corner detectors (Harris and FAST)
and different pyramid levels (up to 4 levels). Therefore, we propose a different method for
establishing ground truth, which we describe next.

3.1.2 Ground Truth using Feature Tracks

Instead of using frames, we post-process the corner events to find “feature tracks”. A feature
track is composed of an inner and an outer oblique cylinder in space-time (see Fig. 5(a)). We
exhaustively search for feature tracks by creating hypotheses using two corner events and
checking whether there are enough corner events in the inner cylinder and few corner events
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(a) Dynamic Range (b) Frame Rate (c) Corner Interpretation

Figure 4: Issues with image-based ground truth. Frames from the DAVIS with superim-
posed detected corners (yellow traces) from frame-based Lukas-Kanade corner tracking im-
plementation. (a): Corners in areas with overexposure (red) and underexposure (blue) are
not detected in the image (frame from the boxes dataset). (b): Too much motion between
two frames and motion blur causes Lucas-Kanade tracking to fail (frame from the shapes
dataset). (c): Not the same corners are detected using the frames and the events (highlighted
in red) (frame from the shapes dataset).

in the outer cylinder. We used 3 and 5 pixels for the inner and outer radius, respectively, a
minimum of 30 inner events, and maximum ratio of outer-to-inner events of 25 %. We then
consider all corner events belonging to such a feature track as inliers of the hypothesis and
label them as correct corners.

3.2 Event-based Harris Detector
We compare our method with the event-based adaptation [17] of the Harris detector, which
we describe here for completeness. Their method binarizes the SAE by the newest N events
(depending on the experiment, they choose N = 1000 or N = 2000). Let Σb be a binary
patch centered around the latest event, where 0 and 1 indicate the absence and presence of
an event, respectively. Compute Ix = Σb ∗Gx and Iy = Σb ∗Gy as convolutions of the patch
with 5×5 Sobel kernels Gx and Gy = G>x , respectively. Compute Harris matrix

M = ∑
e∈Σb

g(e) ∇I(e)∇I>(e), (3)

where g is a Gaussian weighting function with spread σ = 1pixel, ∇I(e) = (Ix(e), Iy(e))> is
the gradient at pixel e, and the 2× 2 matrix ∇I(e)∇I>(e) is the point-wise structure tensor.
Finally, the Harris score is computed as

H = det(M)− k · trace(M)2, (4)

where k = 0.04 is a user-defined parameter. The event at the center of the patch is classified
as a corner if its score H is large than a threshold S.

Spatially-Adaptive Harris Method. We propose the following improvement to the above-
mentioned event-based Harris detector. Instead of choosing the newest N events for the
whole image plane, which depends on the amount of texture in the scene, we choose the
number of newest events locally, Nl , around the event under consideration. This choice is
more sensible since only the latest events around the current one are relevant for deciding
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(a) Feature Track (b) Labeled Data

Figure 5: Ground truth using feature tracks. (a) Feature tracks shown in space-time (time
going upwards) represented by an inner and outer oblique cylinder. Points represent events
that have been detected as corner events. Only if few corner events fall within the outer
cylinder (red), the corners in inner cylinder are considered as correct detections (green).
(b) Visualization of labeled data where each dot represents a corner detection. Green dots
are part of a feature track (and therefore labeled as “true” corner), whereas red corners are
considered false detections.

whether that event is a corner or not. Hence, our modified Harris detector adapts to the local
visual information and is independent of the scene and the sensor size. We found that a
patch of 9×9 pixels, the latest Nl = 25 events therein, and a threshold of S = 8 gave the best
performance over a wide variety of datasets. Note that this is the same patch size as the one
used in our proposed FAST-inspired corner-detection method (see Section 2).

3.3 Detector Performance
We compare the performance of our method with the spatially-adaptive Harris method de-
scribed above. We evaluate the detectors on a representative subset of the datasets provided
by the publicly available Event-Camera Dataset [12]. Each dataset is approximately one
minute long and contains tens of millions of events. The scenes in the dataset range from
simple shapes to natural and office environments. The motion speed, and therefore also
the event rate, steadily increases during the datasets, reaching top values of over 3 m/s and
900 ◦/s, corresponding to activity peaks of 8 million events per second.1

The results are summarized in Table 1 and report the reduction rate in percentage (Red.)
and the percentage of corner detections that could be matched to a feature track (FT, cf. Sec-
tion 3.1.2). Figure 6 shows snapshots from both methods for all scenes overlaid on the frame.
Figure 1(b) shows the corners in space-time together with the event stream for the shapes
dataset during an interval of 1 s. Our method performs slightly worse than spatially-adaptive
Harris on almost all datasets, but runs more than an order of magnitude faster, as shown in
the next section (see Table 2). Both methods show the same trend: on scenes with low tex-
ture (such as shapes that contains only black-and-white patterns or dynamic that contains a
desk, screen, books, and a moving person), both methods perform very well. On more finely-

1Sampled at 1 ms intervals.
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(a) shapes (b) dynamic

(c) poster (d) boxes

Figure 6: Visualization of corner detections of the last 33 ms and 100 ms in bright and dark
color, respectively. Left and right images show the detections of Harris and our method,
respectively. The datasets are from the Event-Camera Dataset [12]. The images are only
shown for visualization and not used in either method. Color indicates the polarity of the
corner events: green and red are events with positive and negative polarity, respectively.

textured scenes (such as boxes and poster that contain fine-grained natural pattern), fewer
feature tracks can be found in the corner event stream. This does not necessarily mean that
the detections are wrong, but rather that there might be corner-like structures very close in
the image that cannot be separated well with the proposed ground-truth labeling technique.
Further, the detector performance does not significantly depend on the motion type (rotation,
translation, or 6-DOF), but rather on the level of texture in the scene.

3.4 Computational Performance
A major advantage of our algorithm is its runtime. Due to the asynchronous nature of event
cameras, the event rate depends on the scene, the motion, and the sensor parameters (biases).
The event rate in the Event Camera Dataset [12] is in the range of a few million of events
per second (peaks of 8 million events per second). Our algorithm runs at 780 ns per event,
allowing rates of up to 1.2 million events per second—more than an order of magnitude
higher than previous methods. The results are summarized in Table 2. We used a single core
of an Intel i7-3720QM CPU at 2.60 GHz for all experiments.

Since our method uses only a small local neighborhood of the events, parallelization
is straightforward, if needed, with very little overhead. While this argument applies also
to the Harris detector, the runtime per event remains critical to achieve low-latency perfor-
mance: the DAVIS has a latency of 3 µs [2]. While the application of Harris triples this
latency (11.6 µs), our method only yields around 30 % additional latency to the overall sys-
tem (0.78 µs). The Harris method is slower for two main reasons: (i) a sort operation is
required to find the latest N events on the SAE2; (ii) the computation involves convolu-
tions (Sobel operator to compute ∇I) and matrix multiplications (Gaussian weighting). Our

2Just keeping the last N events in a queue is not equivalent, because pixels often fire more than one event. For
Harris to work best, we need the last N events from distinct pixels.
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Harris [17] Ours
Texture Dataset Red. FT Red. FT

shapes_rotation 92.7 74.1 88.9 74.7
low shapes_translation 91.7 78.3 87.8 77.5

shapes_6dof 90.6 77.1 87.0 76.8
dynamic_rotation 95.1 53.3 96.4 46.4

medium dynamic_translation 95.3 62.1 96.7 52.1
dynamic_6dof 95.4 55.9 96.4 49.4
poster_rotation 92.6 35.3 95.7 30.5

high poster_translation 92.3 39.5 95.8 35.9
poster_6dof 92.4 35.3 95.6 32.1
boxes_rotation 92.1 32.9 96.7 25.2

high boxes_translation 92.4 37.0 96.7 30.5
boxes_6dof 92.7 34.4 96.8 26.7

Table 1: Performance of Harris and our detector expressed as reduction rate (Red.) of the
event stream and matched Feature Tracks (FT). Values are given in percentages.

Method Time per event [µs] Max. event rate [e/s]
Harris [17] 11.6 86,230
Ours 0.78 1,275,000

Table 2: Runtime comparison per event and corresponding maximum event rate.

method, instead, works only by direct, pixel-wise comparisons on the SAE. Thus, there are
no expensive floating-point or sorting operations carried out on the pixel values. Addition-
ally, as mentioned in Section 2 (Fig. 3(a)), our method is also fast because it processes only
the most relevant part of the patch for the current event, which accounts to less than half of
the pixels in the patch.

4 Discussion

The early reduction of the event stream to a corner event stream has several advantages.
First, the corner detector acts as a filter: letting through only the most informative (i.e., less
ambiguous) and well-localized events, and reducing, by more than an order of magnitude, the
amount of data that must be processed at later stages in the pipeline, at little computational
cost. Second, the low-latency and asynchronous nature of event camera output is maintained
because each event is processed as soon as it is received. Since our algorithm runs very fast,
very little additional latency is introduced. Third, the event-based paradigm of processing
data on an event-by-event basis is preserved since we decide whether an event is a corner
immediately and only using past events in a local neighborhood.

While the corner detection quality is slightly worse than an improved version of a state-
of-the-art method, its computational performance is more than an order of magnitude faster.
However, since both the Harris detector and our method operate on the same signal (the
SAE), it would also be feasible to refine our corner event detections by post-processing them
with the event-based Harris method.
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5 Conclusion
We present a fast corner-detection algorithm that works on the asynchronous output stream of
event cameras and preserves its low-latency and asynchronous characteristics. Our method
reduces the event rate by 90%-95% and achieves a number of correctly-tracked features
close to a state-of-the-art event-based corner detector (less than 10% difference). Since our
method works directly on the Surface of Active Events using only binary comparisons, the
processing time per event is very little and millions of events can be processed per second
on a single core, which is more than 10 times faster than state-of-the-art methods. If needed,
our method can be parallelized with almost no overhead since it uses only local information.
Furthermore, as the resolution of future event cameras steadily increases, the event rate will
also increase, and our algorithm will become more relevant to convert the event stream into
a more manageable stream of informative and well-localized events.

Future work will include improving the detection quality further and investigation of
non-maximum suppression methods, which is non-trivial due to the asynchronous nature of
the events.
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