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Abstract

The generation of a basic matte model is at the core of many multi-light reflectance
processing approaches, such as Photometric Stereo or Reflectance Transformation Imag-
ing. To recover information on objects’ shape and appearance, the matte model is used
directly or combined with specialized methods for modeling high-frequency behaviors.
Multivariate robust regression offers a general solution to reliably extract the matte com-
ponent when source data is heavily contaminated by shadows, inter-reflections, specular-
ity, or noise. However, robust multivariate modeling is usually very slow. In this paper,
we accelerate robust fitting by drastically reducing the number of tested candidate solu-
tions using a guided approach. Our method propagates already known solutions to nearby
pixels using a similarity-driven flood-fill strategy, and exploits this knowledge to order
possible candidate solutions and to determine convergence conditions. The method has
been tested on objects with a variety of reflectance behaviors, showing state-of-the-art
accuracy with respect to current solutions, and a significant speed-up without accuracy
reduction with respect to multivariate robust regression.

1 Introduction

Multi-light reflectance acquisition and processing techniques, such as Photometric Stereo
(PS) [47], Reflectance Transformation Imaging (RTI) [28], and Polynomial Texture Maps
(PTM) [26], aim at characterizing surfaces by observing them from a fixed point of view
under different lighting conditions.

The generation of a matte model from image measurements is at the core of many suc-
cessful approaches, which use it directly, or augment it with specialized methods for mod-
eling high-frequency components (see Sec. 2). Such recovered low-frequency information,
typically obtained by fitting low-order polynomials or Hemispherical Harmonics (HSH) to
the captured data, is used for a variety of applications, including relighting[15, 26], enhanced

(© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Woodham} 1980

Citation
Citation
{Mudge, Voutaz, Schroer, and Lum} 2005

Citation
Citation
{Malzbender, Gelb, and Wolters} 2001

Citation
Citation
{Giachetti, Ciortan, Daffara, Marchioro, Pintus, and Gobbetti} 2017

Citation
Citation
{Malzbender, Gelb, and Wolters} 2001


2 R. PINTUS, A. GIACHETTI, E. GOBBETTI: GUIDED ROBUST MATTE-MODEL FITTING

visualization[25], normal/albedo extraction[10], as well as material classification and seg-
mentation [7, 44].

Reliably fitting the matte model to measurements in the presence of non-Lambertian phe-
nomena (e.g., shadows, anisotropic behaviors, gloss, specularity) is easily prone to errors,
and a variety of methods, from heuristic trimming of outliers to robust fitting procedures,
have been proposed (see Sec. 2). The most general solutions are based on multivariate
robust regression [10, 54], which is able to automatically separate inlier and outlier mea-
surements according to the fitted models, to identify matte and non-matte behavior, and to
provide a more reliable diffuse interpolation at non-sampled locations due to reduced risks
of over-fitting. However, the highest accuracy of robust algorithms comes at the price of in-
creasing computational costs, due to the need to evaluate a large number of hypotheses. This
makes those solutions impractical in most scenarios, especially as the number of parameters
increases [53].

Our contribution harnesses the capacity of robust statistics to be resistant to highly con-
taminated data, but exploits a computational framework that provides a considerable speed-
up while keeping the fitting error comparable to current slow robust estimators, by using a
guided sampling approach to drastically reduce the number of computed fitting trials. We
first show how the efficiency of a Least-Median of Squares (LMS) robust regression can be
improved by providing a fitting tolerance threshold and by associating to each measurement
a weight proportional to the a-priori likelihood that the measurement is part of the solution.
This additional information provides a means for likely generating good candidate solutions
early-on and for recognizing an optimal candidate solution as soon as it is generated. We
then show how we can generate the required information for such a guided algorithm by
propagating the information from already computed pixels using a similarity-driven region
growing strategy implemented using multi-core parallelism.

While guided sampling approaches have been successfully proposed to speed-up com-
putation in many Computer Vision areas, see Sec. 2, this is to the best of our knowledge the
first time that an optimization of robust fitting is proposed for the specific case of parameter
estimation from MLICs. In particular, we introduce in this context a specific guided sam-
pling approach based on appearance profile similarity, as well as parallelizable techniques to
propagate results from already known pixels to unknown ones. As demonstrated in Sec. 4,
the proposed approach, evaluated both on synthetic and real-world data provides a signifi-
cant speed-up without accuracy reduction, and can be employed as a building block in RTI,
PTM or PS pipelines. Moreover, we show how generic robust fitting approaches (baseline or
accelerated), without domain specific modifications, are generally on-par with specifically
tailored state-of-the-art PS techniques, and offer the additional possibility of being applica-
ble, without modification, to other estimation techniques, such as higher order polynomial
fitting for PTM computation. While the method has been implemented, tested and validated
by using a LMS solver, it is possible to apply our strategy to many other iterative robust
regressions, such as M-estimators or iteratively re-weighted Least Squares (LS). Moreover,
the algorithm is fully data-driven, and does not need user-defined, tuned parameters.

2 Related work

Computing surface properties from multi-light data is a very old and still very active research
area [16, 25, 26, 28, 47]. We discuss here only the approaches strongly related to ours, and,
in particular, works that aim at fitting a low-frequency model to reflectance measurements.
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For a wider coverage, we refer the reader to established surveys in surface reflectance cap-
ture [39], multi-light computational frameworks [1], digital modeling of material appear-
ance [9], and geometric analysis in cultural heritage[30].

The simplest technique is the classical Lambertian PS approach [47], which assumes im-
age intensity proportional to the cosine between the surface normal and the light direction,
and exploits it to recover albedo and normals for multiple images. PTM [26] is presented
as a fitting-based generalization of the simplest PS, and extends the basic Lambertian model
with a 6-term polynomial; two of its coefficients are the two components of the normal
vector (Lambertian term), while the others try to capture the remaining low-frequency sig-
nals. A linear LS regression is used to fit the model. Subsequent works presented a wide
range of follow-ups to RTI-based surface characterization [11, 17, 28, 46], and proposed
alternatives to define and represent surface properties, such as spherical and hemispherical
harmonics [29], bivariate Bernstein polynomials [19], bi-polynomial functions [35], and dis-
crete modal decomposition [31]. Unfortunately, all those methods cannot cope well with
the presence of non-diffuse phenomena such as gloss, highlights, specularity, or shadows.
The underlying computational framework is strongly affected by those leverage points, and
exhibits high error in the resulting interpolation, albedo and normal maps.

Many techniques have been proposed to detect/remove outliers from the fitting compu-
tation. The first attempts have been made in the field of Photometric Stereo. Since three
inliers are enough to compute the normal maps in the diffuse case, four- or five-light setups
are used to exclude the lights that generates significantly distorted outcome [3, 8, 33, 37].
In the case of N lights (i.e., N-dimensional appearance profile), Wenger et al. [45] heuris-
tically eliminate the half darkest measurements and the brightest 10% before applying LS.
Conversely, Willems et al. [46] gradually prune unreliable values through iterative normal
estimations, while Yuille and Snow [52] rely on the integrability constraint. Monotonic-
ity is another reflectance property exploited to deal with non-Lambertian diffuse behav-
iors [18, 34]. Some works exploit the difference between the light and object chromaticity,
by exploiting the dichromatic reflection model [23, 50]. Component based modeling [22]
is another more general way to separate reflectance terms by decomposing input into a lo-
cal and global component. Others handle outliers within a rank minimization [48] or ma-
trix factorization frameworks [21]. Recent techniques employ statistical models as labeling
problems coupled with shadow graphs [4, 51], maximum-likelihood (ML) [43], or Markov
random fields (MRFs) [40, 49], as well as non-parametric data-driven approximation of ob-
ject reflectance [2]. Robust regression has proven to be a general powerful approach for
RTI computational problems [10, 48, 53]. Ikehata et al. [20] present a hierarchical Bayesian
approximation to deal with non-Lambertian corruptions, and to estimate reliable surface nor-
mals. Zhang and Drew [54] propose to use a LMS approach to solve for a 6-term polynomial
diffuse component. Their robust method automatically discards outliers (up to 50% of input
measurements), obtains a reliable interpolation, and retrieves a good estimation of albedo
and normals. Once they compute a reliable matte component, they can isolate the remaining
high-frequency signal, and model it with Radial Basis Functions (RBFs). Although some
of the previous approaches can provide a good appearance representation, some important
issues remain unsolved. The methods that throw away a fixed or proportional number of
values with conservative heuristics do not ensure both the removal of leverage points or an
adequate level of Signal-to-Noise Ratio (SNR) [3, 8, 33, 37, 45]. Others have complex
rationales based on too constrained assumptions [38], initial guesses [43], or on a-priori
knowledge [50]. Most of them have also to address the trade-off between accuracy and a
heavy computational load [22, 53]. Previously proposed robust methods [10, 54] are very
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general, since they do not impose any prior knowledge or heuristics about outlier distribu-
tion, but, since they achieve robustness and generality by blindly applying a classic robust
fitting method [32] independently for each pixel, they require very high computational times
even in parallel settings.

For this reason, we investigated possible strategies to reduce the computational complex-
ity of robust fitting methods. Our solution follows the general idea of estimation by guided
sampling, which has proven effective in many areas of Computer Vision, in particular for
increasing the chance to pick inlier samples at each iteration of RANSAC-style estima-
tors [6, 13, 27, 42]. The common idea underpinning guided sampling is to exploit prior
knowledge to increase the density of samples in the regions where the correctness probabil-
ity of the hypothesis is higher, rather than sampling the search space uniformly [41]. With
an accelerated hypothesis generation [5], it is thus possible to reach a low residual error and
an acceptable convergence within a reduced amount of iterations.

Our guided sampling solution introduces a speed-up strategy that harnesses spatial con-
sistency, appearance profile similarity, and data-driven estimation of outlier distribution among
neighboring pixels. To the best of our knowledge, this is the first algorithm that effectively
exploits information from past pixels to drive robust per-pixel computation in the field of
MLIC processing. Although tested with LMS, the proposed rationale is general enough to
be easily adapted to increase computational efficiency of other, general iterative robust es-
timators applied to RTI processing pipeline. Moreover, while we validate our method by
fitting polynomial bases, the theoretical underpinning of our solution can be generally used
with other types of basis functions, e.g., HSH [14, 54].

3 Method

Multi-light reflectance data is acquired by taking from the same pixel-registered viewpoint
a set of photographic images of an object, with each image illuminated from a different di-
rection. As a result, a calibrated processing pipeline receives as input a so-called per-pixel
appearance profile, i.e., a list of pairs that couple a measured value with a light direction and
intensity. Surface shape and diffuse appearance can then be characterized for each pixel by
converting this information to shape and appearance descriptors. In this work, we focus on
matte model extraction, in which the set of multi-light measurements is fitted to an analytical
low-frequency model (e.g., a polynomial). Our technique is based on two main pillars. The
first (Sec. 3.2) is the modification of the standard robust regression method (Sec. 3.1) in order
to provide additional parameters that allow for an early termination of the iterative process,
and a resulting speed up of the atomic, per-pixel fitting coefficient computation. The sec-
ond contribution (sec. 3.3) is a global strategy to automatically compute a data-driven sparse
initialization of those parameters, and a region-growing procedure to propagate that infor-
mation to the entire image domain. As we will see, the structure of the proposed algorithm
is highly parallelizable, and can be implemented as efficiently as current pixel-independent
solutions on multi-core machines.

3.1 Standard per-pixel robust estimator

The Least Median of Squares (LMS) estimator [32], which ensures up to 50% breakdown
point (half input measurements can be outliers) [32], has already proved to be capable to
provide excellent results for matte-model extraction in general settings [10, 48, 53]. It is an
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Algorithm 1: Standard vs. Guided LMS algorithm.

Standard Least Median of Squares
Input:
- AP: appearance profile
- €: fraction of outliers
- P: probability of picking at least an inlier subset
Output: Solution §
begin
Compute number of trials nTrials(e, P)
do
sAP, = Random sampling of an AP’s subset of
p cardinality
Compute fitting coefficients from sAP,
Compute fitting coefficients from elements with
the best half residuals (Refinement)
Evaluate the median residual M; = med r?
t

Update solution S if M; is less than current min-
imal residual
while J < nTrials
Compute inliers for S with r? < (2.50)°
Compute final fit S using all the inliers
return S

Guided Least Median of Squares
Input:
- AP: appearance profile
- wAP: appearance profile weights
- th: residual threshold
- €: fraction of outliers
- P: probability of picking at least an inlier subset
Output: Solution §
begin
Compute number of trials nTrials(e, P)
do
sAP, = Weighted random sampling of an AP’s
subset of p cardinality
Compute fitting coefficients from sAP,
Compute fitting coefficients from elements with
the best half residuals (Refinement)
Evaluate the median residual M; = med r?
i
Update solution S if M; is less than current min-
imal residual
while (J < nTrials) or (M; < th)

Compute inliers for S with 12 < (2.56)°

Compute final fit S using all the inliers
L returnS$S

iterative process that finds the fitting solution for a set of N elements i by minimizing the

median of squared residuals riz. For a given N-dimensional appearance profile, the algorithm

picks m random subsets of profile elements with size p (see Algorithm 1 left); p is the number

of unknown coefficients in our fitting model. For each subset J, a generic solver (e.g., LS)

is used to find the corresponding solution p;. Then, the median value M; is obtained as

M; = .mledN "1'2 (ps). The final solution will be the p; that corresponds to the minimal among
=1...

all m M;’s.

It should be noted that, since the solver used in each iteration takes the minimal number
p of unknowns to compute each candidate solution, it might be prone to errors due to the
presence of noise. To cope with this problem, at each iteration, it is common to compute
the residual for each profile element, take the best 50% of them (assumed to be inliers),
and launch a refinement step with a more overdetermined system. The presence of Gaussian
noise is also an issue for the efficiency of LMS. After the robust iterations terminates a further
refinement step is typically added to improve the solution. As proposed by Rousseeuw [32],
we estimate a robust standard deviation as 6 = 1.4826 1+ 5/ (N — p)] v/M;, and we use this
to extract inlier elements (ri2 <(2.5 0')2). We use this information to compute a least-squares
procedure for all the inliers.

The number of trials m that ensures convergence of the algorithm is computed as m =
log(1—P) /log[1 — (1 —€)P], where P is the probability that at least one of the m subsets
contains only inliers, and € is the percentage of outliers expected in the input data. This is
the main reason of the heavy computational times. Since we want to ensure high accuracy,
we need to set P =~ 1, and if we consider the highest allowed fraction of outliers, we have to
set € = 0.5 (50% breakdown point). We always use those values for our experiments. With
those numbers, as p slightly increases (e.g., 6-term PTM polynomial), m tends to rapidly
become very high; for instance, over 300 trials per pixel are required to have a probability of
99% of generating a non-contaminated base when up to 50% outliers might be present.
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3.2 Guided per-pixel robust estimator

We modify that standard pipeline in order to increase efficiency but keeping a similar accu-
racy (see Algorithm 1 right, modifications highlighted in red). Typical LMS uses a Monte
Carlo technique to draw the m subsets in no particular order, and considers a uniform distri-
bution of the likelihood that an appearance profile element was an inlier or an outlier. It is
therefore in general impossible to reduce the number of iterations for early convergence.

In our case, we provide an additional list of weights that rank the elements by a given
inlier probability (we will see in Sec. 3.3 how we obtain these probabilities). Now, each
time we need to obtain a subset from the input data, we employ a weighted random pick-
ing, that ensures that the probability of picking an item is proportional to its weight. Such
a weighted selection can be efficiently implemented using techniques employed in Reser-
voir sampling [12]. The basic idea is, at each time a subset has to be selected, to assign
to each potential candidate i a key 7'/ where r is a random number. By partially sorting
the items, and select the top p, we can generate a sample at each trial. Since such a guided
weighted selection favors good candidate solutions (according to a-priori probabilities en-
coded in weights), it is likely that the inlier set is identified in the first few iterations. Thus,
a strategy in which the process is stopped as soon as the median residual M; is less than a
given residual threshold likely decreases the computational cost.

Algorithm 2: Global fitting

Input:

- AParray: nxm 2D-array of appearance profiles

- M: number of sparse seed pixels
Output: nxm 2D-array of fitting coefficients
begin
Compute similarity map of /
Select a sparse set of M seed pixels S
for pixel p € S do in parallel

| Compute fitting coefficients with ¢/, = 0 and uniform weights

Compute the residual threshold th = avg (r, + 2.50‘,,)2
P

do
Select candidate pixel set C
for pixel ¢ € C do in parallel
Compute fitting coefficients with th, = th and weights from the most similar, already processed, neighbor
of ¢

while C is not empty;
return nxm 2D-array of fitting coefficients

3.3 Parallel guided estimation

The per-pixel robust estimator presented in Sec. 3.2 is employed on a global basis to con-
vey a fitting solution for the entire image domain (see Alg. 2). In particular, we employ a
region-growing approach to propagate already computed solutions to neighbor pixels, and
to exploit this data-driven information to determine convergence conditions and anticipate
process termination.

At the beginning of the procedure, we do not have any information about both expected
residual and profile weights, neither globally nor on a per-pixel basis. For this reason, we
select a small amount of evenly distributed random pixels across the image domain, and for
those corresponding appearance profiles we compute a standard robust fitting, recording the
solution, together with the fitting residual and the residual error for each light. This is slow,
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but feasible when applied only on very few seed pixels. For the rest of the pixels, computed
using our accelerated guided solution, we set a convergence threshold equal to the median of
seed residuals. We then compute the solution for all pixels using a region-growing approach,
which computes, in multiple passes, new pixel solutions only in the neighborhood of already
computed ones. The nature of this procedure is highly suitable for parallel execution by
selecting and computing all the pixels at a given iteration in parallel.

Each iteration of the region-growing pipeline starts by selecting as candidate pixels for
processing the spatial neighbors of already computed pixels that exhibit a large similarity
with them. To favor a similarity driven propagation, only the top 50% of most similar pix-
els are retained at each propagation step. The basic idea of this similarity-driven flood-fill
approach is that neighboring pixels having a similar profile have a high probability of ex-
hibiting a similar illumination behavior. Thus, the weights required for weighted random
sampling can be derived from the known errors associated to each light in the most similar
neighbor. In practice, we set the weight to be proportional to the residuals ri2 for each ap-
pearance profile element i, remapped so that the minimum residual has a weight of 1, and the
maximum residual has a weight of 1/255. These weights, together with the estimated error
threshold, are used to control the guided pixel estimator.

In order to quickly compute the most similar neighboring pixels, a similarity map, de-
pending only on input data, is computed in a pre-processing step. There is a vast amount of
methods to measure similarity between appearance profiles [24]. Here we adopt a straight-
forward correlation-based measurement, that proved to behave well in our framework. Any-
how, the proposed pipeline is independent from this choice, and more fancy metrics can be
employed.

4 Results

The proposed computational framework has been implemented on Linux using C++. We test
the performance of our algorithm by using the data and the evaluation results of the DiLi-
GenT benchmark [36] (Fig. 1), which is a photometric stereo image dataset with calibrated
directional lights. The dataset contains ten objects of varying reflectance properties. For
each object, images with resolution of 612x512 depict the model illuminated from 96 differ-
ent calibrated lighting directions. Ground-truth normal maps aligned at sub-pixel precisions
are provided. All the benchmarks of our method have been executed on a PC with a Intel
Core 17-4790K CPU (4 cores, 8 threads, 4.00GHz, 8MB cache) and 8GB RAM.

Figure 1: Sample images from the DiLiGenT benchmark [36]
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4.1 Lambertian model fitting

The first test is the robust fitting of a Lambertian model aimed at the computation of the
surface normals. This makes it possible to test the accuracy of the proposed approach with
respect to the available ground-truth data in the DiLiGenT database, as well as to measure the
performance in a worst-case situation for our general matte-model fitting method, given that
only three parameters have to be derived from the measures. Although our aim is to propose
a general strategy for guided robust fitting in the context of MLIC, we present here results
and comparisons in the PS case, since it is a well researched subproblem with available
benchmark data. Nevertheless, it should be noted that, while PS methods can exploit field
based knowledge (monotonicity, symmetries, differential properties), we do not make any
adaptation to our fitter.
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Figure 2: Error statistics. Comparison of our results with the state-of-the-art techniques
surveyed in Shi et al. [36]. (Left) Distribution of the median angular error of all tested meth-
ods. The thin line depicts the minimum and maximum error interval, the box represents the
1¥ to the 3" quartile range, while the central mark (white and black dot) is the median of
all angular errors. The red dot is the error of the classic PS, while the error of our method
is shown as a green dot. (Right) Median angular error for all approaches (our method high-
lighted in red).

We compare our error statistics with those presented in the DiLiGenT benchmark, which
are the classic photometric stereo [47] as well as some non-Lambertian methods with state-
of-the-art performances [2, 16, 18, 19, 20, 34, 35, 48], and with the classic robust fitting [32].
In Figure 2 we show how our method, that uses a robust statistics technique to automatically
separate Lambertian from non-Lambertian behavior, provides state-of-the-art results in nor-
mals estimation for all the datasets. Both the standard full per-pixel LMS estimation and our
accelerated results are within the most accurate normal fitting methods. As noted by Shi et
al. [36], particularly complicated BRDFs (Cow), spatially-varying materials (Goblet), and
concave shapes (Reading, Harvest) remain challenging types of objects. Methods tailored
for general isotropic reflectance (e.g., Shi ef al. [34]) work well for some complicated data
(e.g., Cow), but have bad error behavior for easier objects (e.g., Bear or Buddha).

In order to evaluate the performance, for each dataset we estimate the Lambertian model
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using the classic robust fitting and our guided version. In Table 1, we report the computa-
tional times together with the number of LS solve iterations, and we present the average,
median, 1% and 3" quartile of the angular error. We show how our method is capable of
providing a relevant speed-up (an average of ~ 10x) without a significant loss in normal map
accuracy. For display purposes, we show in Fig. 3 a visual comparison between the ground
truth normal map of the dataset Buddha and those computed by the classic PS algorithm [47],
the classic robust approach [32] and the proposed method. Again it provides a visual cue on
how our speed-up strategy, compared to the classic robust method, does not affect the final
reconstruction result. Low speed-ups are related to complex, still challenging objects, i.e.,
Cow and Harvest. Although our self-tuning adaptive method slightly increases the error for
PS compared to the classic robust fitting, the increase is only ~ 5% on average, and results
remain within the error range of specifically designed PS techniques, as shown in Fig 2. Our
future work will concentrate on improving the estimation of the residual threshold.

Dataset Time # Solve Avg. Med. Ist Qr 3rd Qr. Speed-up
Ball 2.8s/0.2s | 2.5M/122K 2.0/2.1 2.1/2.1 1.5/1.6 2.6/2.6 ~14x
Cat 8.3s/0.5s | 7.2M/345K 6.4/6.7 5.7/5.9 3.7/3.8 7.9/8.6 ~16x
Potl 10.2s/0.7s | 9.2M/481K 7.4/8.0 5.3/6.0 3.2/3.4 8.9/10.1 ~14x
Bear 7.7s/0.7s | 6.6M/463K 5.3/5.5 4.2/4.4 2.5/2.6 6.7/7.0 ~10x

Pot2 5.9s/0.8s | 5.6M/547K | 11.8/12.7 | 9.6/10.7 55/5.6 | 16.4/18.7 ~Tx
Buddha 8.35/0.7s 7.1M/449K 9.0/9.4 7.3/7.7 4.5/4.6 10.9/12.0 ~11x
Goblet 4.7s/0.6s 4.2M/357K | 12.9/143 | 11.2/11.9 6.8/7.1 16.7/20.0 ~8x
Reading 4.5s/0.7s 4.4M/461K | 12.8/13.3 7.217.4 4.2/4.3 14.7/16.1 ~T7x

Cow 4.4s/1.1s 42M/721K | 21.3/24.0 | 21.9/26.1 | 13.2/14.9 | 29.2/33.4 ~4x
Harvest 9.3s/2.6s 8.8M/1.9M | 24.3/25.2 | 18.5/19.6 8.0/8.6 34.5/35.9 ~4x
Table 1: Lambertian Fitting. Time and error statistics of the Lambertian Fitting with three
unknown coefficients. Each cell compares the classic Robust method with our proposed

Guided approach (R/G). The speed-up is ~ 10x on average.

(a) Original  (b) GT (c) Classic PS (d) Robust (e) Guided

Figure 3: Normal Maps. Visual comparison between ground truth normal map (b) and
those computed by the classic PS (c), the classic robust method (d), and our approach (e).
We provide a significant speed-up (~ 11x) with a preserved reconstruction quality.

4.2 Matte-model estimation for polynomial texture maps

Beside photometric stereo (or normal map) computation, our method is more general, since
it aims at robustly fitting an appearance analytical model with a custom number of parame-
ters. Testing the provided speed-up in the case of a model with only three coefficients is the
worst case for us, not in terms of error comparison, but in terms of gain in computational
time; this is because the more coefficients we have, the more the classic robust algorithm is
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computationally heavy, and the more our algorithm can prove to be more efficient by provid-
ing a higher speed-up for it. For this reason, in Table 4(a) we show the time statistics related
to the commonly used 6-coefficient polynomial fitting [10], together with the number of LS
solves performed during the classic and guided iterative routine. In this case the speed-up
is greater than ~ 20x for most of all the datasets, and ~ 30x on average. In Figure 4(b)
and Figure 4(c) we visually compare the matte model relighting of the Buddha model ob-
tained with the 6-coefficient polynomial computed respectively by the classic robust and our
guided approach; we produce a very similar outcome while significantly breaking down the
computational time.

Dataset Time # Solve Speed-up
Ball 48.4s/0.8s 21.3M/311K ~60x
Cat 137.6s/2.3s 60.9M/891K ~60x

Potl 173.8s/2.8s 78.2M/1.1M ~63x
Bear 129.5s/3.3s 55.8M/1.3M ~39x
Pot2 104.0s/3.7s 47.9M/1.4M ~28x
Buddha 138.9s/4.0s 60.7M/1.5M ~35x
Goblet 80.5s/4.1s 35.4M/1.5M ~19x
Reading 77.8s/3.9s 36.6M/1.5M ~20x

Cow 77.5s/16.1s | 35.6M/6.1M ~5%
Harvest | 159.9s/25.5s | 74.6M/10.5M ~6X — -
(a) Speed-up (b) Robust (c) Guided

Figure 4: 6-Coefficient Fitting. Time statistics of the 6-coefficient polynomial fitting(a).
Each cell compares the classic Robust method with our proposed Guided approach (R/G).
The fitted coefficients from the robust and the guided algorithms produce the same relighting
results (b)(c), while providing a ~ 35x speed-up.

5 Conclusions

We have presented a new, guided multivariate robust regression to extract the matte com-
ponent of a spatially-varying material from a multi-light data. We have proved how our
similarity-driven flood-fill strategy is capable of exploiting knowledge of already computed
pixels to accelerate per-pixel convergence and to produce a significant speed-up (on average
greater than ~ 10x) of the overall computation. We have presented a series of testbeds with
different reflectance behaviors, and proved that our acceleration strategy maintains state-of-
the-art performances. Open problems and challenges still remain, mostly related to complex
BRDFs. Future works will include the study of different fitting models beside polynomials
(e.g., non-linear models such as rational functions), as well as an investigation on different
strategies to select initial seeds, and to compute a better estimation of convergence thresholds
to further increase speed-up while decreasing exit residuals.
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