
MOPURI, GARG, BABU: FAST FEATURE FOOL 1

Fast Feature Fool: A data independent
approach to universal adversarial
perturbations

Konda Reddy Mopuri∗

sercmkreddy@grads.cds.iisc.ac.in

Utsav Garg∗†

utsav002@e.ntu.edu.sg

R. Venkatesh Babu
venky@cds.iisc.ac.in

Video Analytics Lab,
Department of Computational and Data
Sciences,
Indian Institute of Science,
Bangalore, India

Abstract

State-of-the-art object recognition Convolutional Neural Networks (CNNs) are shown
to be fooled by image agnostic perturbations, called universal adversarial perturbations.
It is also observed that these perturbations generalize across multiple networks trained on
the same target data. However, these algorithms require training data on which the CNNs
were trained and compute adversarial perturbations via complex optimization. The fool-
ing performance of these approaches is directly proportional to the amount of available
training data. This makes them unsuitable for practical attacks since its unreasonable
for an attacker to have access to the training data. In this paper, for the first time, we
propose a novel data independent approach to generate image agnostic perturbations for
a range of CNNs trained for object recognition. We further show that these perturbations
are transferable across multiple network architectures trained either on same or differ-
ent data. In the absence of data, our method generates universal perturbations efficiently
via fooling the features learned at multiple layers thereby causing CNNs to misclassify.
Experiments demonstrate impressive fooling rates and surprising transferability for the
proposed universal perturbations generated without any training data.

1 Introduction
Machine learning systems are vulnerable [2, 3, 9] to adversarial samples - malicious in-
put with structured perturbations that can fool the systems to infer wrong predictions. Re-
cently, Deep Convolutional Neural Network (CNN) based object classifiers are also shown
[8, 12, 14, 17, 22] to be fooled by adversarial perturbations that are quasi-imperceptible
to humans. There have been multiple approaches formulated to compute the adversarial
samples, exploiting linearity of the models [8], finite training data [1], etc. More impor-
tantly, adversarial samples can be transferred (generalized) from one model to another, even
if the second model has a different architecture and trained on different subset of training

∗ Authors contributed equally.
† Utsav Garg is currently at Nanyang Technological University, Singapore. This work was done while he was an
intern at Video Analytics Lab.
c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Biggio, Corona, Maiorca, Nelson, {™}rndi{¢}, Laskov, Giacinto, and Roli} 2013

Citation
Citation
{Biggio, Fumera, and Roli} 2014

Citation
Citation
{Huang, Joseph, Nelson, Rubinstein, and Tygar} 2011

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2014

Citation
Citation
{Kurakin, Goodfellow, and Bengio} 2016

Citation
Citation
{Moosavi{-}Dezfooli, Fawzi, and Frossard} 2016

Citation
Citation
{Papernot, McDaniel, Goodfellow, Jha, Celik, and Swami} 2016{}

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2013

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2014

Citation
Citation
{Bengio} 2009

2 MOPURI, GARG, BABU: FAST FEATURE FOOL

data [8, 22]. This property allows an attacker to launch an attack without the knowledge of
the target model’s internals, which makes them a dangerous threat for deploying the models
in practice. Particularly, for critical applications that involve safety, robust models should
be learned towards adversarial attacks. Therefore, the effect of adversarial perturbations
warrants the need for in depth analysis of this subject.

Recent work by Moosavi-Dezfooli et al. [13] has shown that there exists a single per-
turbation image, called universal adversarial perturbation (UAP), that can fool a model with
high probability when added to any data sample. These perturbations are image agnostic and
show transferability (being able to fool) across multiple networks trained on the same data.

However, this method requires training data on which the target model is trained. They
solve a complex data dependent optimization (equation (2)) to design a single perturbation
that when added can flip the classifier’s prediction for most of the images. Using a subset
of this training data, they iteratively update the universal perturbation with the objective of
changing the predicted label. It is observed that their optimization procedure requires certain
minimum amount of training data in order to converge. Moreover, the fooling performance of
these approaches are directly proportional to the amount of available training data (Figure 3).
This data dependence makes the approach not suitable for practical attacks as training data
of the target system is generally unavailable.

In order to address these shortcomings, we propose a novel data independent method to
compute universal adversarial perturbations. The objective of our approach is to generate a
single perturbation that can fool a target CNN on most of the images without any knowledge
of the target data, such as, type of data distribution (eg: faces, objects, scenes, etc.), number
of classes, sample images, etc. As our method has no access to data to learn a perturbation
that can flip the classifier’s label, we aim to fool the features learned by the CNN. In other
words, we formulate this as an optimization problem to compute the perturbation which can
fool the features learned at individual layers in a CNN and eventually making it to misclassify
a perturbed sample. Our method is computationally efficient and can compute universal
perturbation for any target CNN quickly (Section 4.4 and Table 6), thereby named Fast
Feature Fool algorithm. The main contributions of our work are listed below

• We introduce for the first time, a novel data independent approach to compute univer-
sal adversarial perturbations. To the best of our knowledge, there exists no previous
work that can generate adversarial perturbations, universal or otherwise, without ac-
cess to target training data. In fact, the proposed method doesn’t require any knowl-
edge about target data distribution, all that it requires is the target network.

• We show that misfiring the features learned at individual layers of a CNN to produce
impartial (undiscriminating) activations can lead to eventual misclassification of the
sample. We present an efficient and generic objective to construct image agnostic
perturbations that can misfire the features and fool the CNN with high probability.

• We show that similar to data dependent universal perturbations, our data independent
perturbations also exhibit remarkable transferability across multiple networks trained
on same data. In addition to that, we show transferability across same architectures
trained on different data. As our method is explicitly made data independent, the
transfer performance of our method is far better compared to that of data dependent
methods (Section 4.2 and Table 2). This property of data independent approach em-
phasizes the necessity for more research focus in this direction.

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2014

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2013

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

MOPURI, GARG, BABU: FAST FEATURE FOOL 3

The paper is organized as following: section 2 discusses existing approaches to com-
pute adversarial perturbations, section 3 presents the proposed data independent approach in
detail, section 4 demonstrates the effectiveness of the proposed method to fool CNNs and
their transferability via a set of comprehensive experiments and section 5 hosts discussion
and provides useful inferences and directions to continue further study about the adversarial
perturbations and design of robust CNN classifiers.

2 Related Works

Szegedy et al. [22] observed that, despite their excellent recognition performances, neu-
ral networks get fooled by structured perturbations that are quasi-imperceptible to humans.
Later, multiple other [6, 7, 8, 12, 14, 15, 18] investigations studied this interesting property
called, adversarial perturbations. These crafted malicious perturbations can be estimated
per data point by simple gradient ascent [8] or complex optimizations [14, 22]. Note that,
the underlying property for all these methods is, they are intrinsically data dependent. The
perturbations are computed for each data point specifically and independent of each other.

Moosavi-Dezfooli et al. [13] consider a generic problem to craft a single perturbation
to fool a given CNN on most of the natural images, called universal perturbation. They
collect samples from the data distribution and iteratively craft a single perturbation that can
flip the labels over these samples. Fooling any new image now involves just an addition
of the universal perturbation to it (no more optimization). In their work, they investigate
the existence of a single adversarial direction in the space that is sufficient to fool most of
the images from the data distribution. However, it is observed that the convergence of their
optimization requires to sample enough data points from the distribution. Also, fooling rate
increases proportionately with the sample size (Figure 3), making it an inefficient attack.

Another line of research [16], called oracle-based black box attacks, trains a local CNN
with crafted inputs and output labels provided by the target CNN (called victim network).
They use the local network to craft adversarial samples and show that they are effective on
the victim (original) network also.

On the other hand, the proposed approach aims towards solving a more generic and
difficult problem: we seek data independent universal perturbations, without sampling any
images from the data distribution or train a local replica of the target model. We exploit the
fundamental hierarchical nature of the features learned by the target CNN to fool it over most
of the natural images. Also, we explore the existence of universal perturbations that can be
transferred across architectures trained on different data distributions.

3 Fast Feature Fool

In this section we present the proposed Fast Feature Fool algorithm to compute universal
adversarial perturbations in a data independent fashion.

First, we introduce the notation followed throughout the paper. Let X denote the distri-
bution of images in Rd and f denotes the classification function learned by a CNN that maps
an image x ∼ X from the distribution to an estimated label f (x).

The objective of this paper is to find a perturbation δ ∈ Rd that fools the classifier f on a
large fraction of data points from X without utilizing any samples. In other words, we seek

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2013

Citation
Citation
{Fawzi, Fawzi, and Frossard} 2015

Citation
Citation
{Fawzi, Moosavi{-}Dezfooli, and Frossard} 2016

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2014

Citation
Citation
{Kurakin, Goodfellow, and Bengio} 2016

Citation
Citation
{Moosavi{-}Dezfooli, Fawzi, and Frossard} 2016

Citation
Citation
{Nguyen, Yosinski, and Clune} 2015

Citation
Citation
{Rozsa, Rudd, and Boult} 2016

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2014

Citation
Citation
{Moosavi{-}Dezfooli, Fawzi, and Frossard} 2016

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2013

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Papernot, McDaniel, Jha, Fredrikson, Celik, and Swami} 2016{}

4 MOPURI, GARG, BABU: FAST FEATURE FOOL

a data independent universal (image agnostic) perturbation that can misclassify majority of
the target data samples. That is, we construct a δ such that

f (x +δ) , f (x), for majority of x ∈ X (1)

For the perturbation to be called adversarial, it has to be quasi-imperceptible for humans.
That is, the pixel intensities of perturbation δ should be restricted. Existing works (eg: [13,
14, 20]) impose an l 8 constraint (ξ) on the perturbation δ to realize imperceptibility. There-
fore, the goal here is to find a δ such that,

f (x +δ) , f (x), for most x ∈ X
||δ || 8 < ξ

(2)

As the primary focus of the proposed approach is to craft the universal perturbations (δ)
without any knowledge about target data X , we attempt to exploit the dependencies across
the layers in a given CNN. The data independence prohibits us to impose the first part of
equation 2 while learning δ. Therefore, we propose to fool the CNN by over-saturating the
features learned at multiple layers (replacing the “flipping the label" objective). That is, by
adding perturbation to input, we make the features at each layer to misfire thereby misleading
the features (filters) at the following layer. This cumulative disturbance of features along
the network hierarchy makes the network impartial (undiscriminating) to the original input,
leading to an erroneous prediction in the final layer.

The perturbation should essentially cause filters at a particular layer to spuriously fire and
abstract out uninformative activations. Note that in the presence of data (during the attack), to
mislead the activations from retaining the discriminative information, the perturbation has to
be highly effective, given the added imperceptibility constraint (second part of equation 2).
Therefore, the difficulty of the attempted problem lies in crafting a perturbation δ whose
dynamic range is restricted typically [13, 14, 20] (with ξ = 10) to less than 8% of the data
range.

Hence, without showing any data (x) to the target CNN, we seek for a perturbation (δ)
that can produce maximal spurious activations at each layer. In order to obtain such a per-
turbation, we start with a random δ and optimize for the following loss

Loss = − log

 K∏
i=1

l̄i(δ)

 such that ||δ || 8 < ξ (3)

where, l̄i(δ) is the mean activation in the output tensor at layer i when δ is input to
the CNN. Note that the activations are considered after the non-linearity (typically ReLU),
therefore l̄i is non-negative. K is the total number of layers in the CNN at which we maximize
activations for the perturbation δ. We typically consider all the convolution layers before
the fully connected layers (see section 4 for advanced architectures). This is because, the
convolution layers are generally considered to learn suitable features to extract information
over which a series of fully connected layers act as a classifier. Also, we empirically found
that it is sufficient to optimize at convolution layers. Therefore, we restrict the optimization
to feature extraction layers, ξ is the limit on the pixel intensity of the perturbation δ.

The proposed objective computes product of mean activations at multiple layers in order
to simultaneously maximize the perturbation at all those layers. We observed that product
results in a stronger δ than other forms of combining the individual layer activations (eg:

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi{-}Dezfooli, Fawzi, and Frossard} 2016

Citation
Citation
{Sabour, Cao, Faghri, and Fleet} 2015

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi{-}Dezfooli, Fawzi, and Frossard} 2016

Citation
Citation
{Sabour, Cao, Faghri, and Fleet} 2015

MOPURI, GARG, BABU: FAST FEATURE FOOL 5

sum). This is understandable, as product is a stronger constraint that forces activations at all
layers to increase for the loss to reduce. To avoid working with extreme values (≈ 0), we
apply log on the product. Note that the objective is open-ended as there is no optimum value
to reach. We would ideally want δ to cause as much strong perturbation at all the layers as
possible within the imperceptibility constraint.

We begin with a trained network and a random perturbation image δ. We then perform
the above optimization to update δ to achieve higher activations at all the convolution layers
in the given network. Note that the optimization updates the perturbation image δ but not the
network parameters and no image data is involved in the optimization. We update δ with the
gradients computed for loss in equation (3). After every update step, we clip the perturbation
δ to satisfy the imperceptibility constraint. We treat the algorithm has converged when either
the loss gets saturated or fooling performance over a small held out set is maximized.

4 Experiments
In this section, we evaluate the proposed Fast Feature Fool method to fool multiple CNN
architectures trained on ILSVRC [19] dataset. Particularly, we considered CaffeNet (simi-
lar to Alexnet [11]), VGG-F [4], VGG-16 [21], VGG-19 [21] and GoogLeNet [23] archi-
tectures. As the primary experiment, we compute the image agnostic universal perturba-
tions for each of these CNNs via optimizing the loss given in equation (3). For simple
networks (eg: CaffeNet) we optimize the activations at all the convolution layers after the
non-linearity (ReLU). However, for networks with complex architectures (inception block)
such as GoogLeNet, we optimize activations at selected layers. Specifically, for GoogLeNet,
we compute the perturbations by maximizing the activations at all the concat layers of in-
ception blocks and conv layers that are not part of any inception block. This is because
maximizing at concat layer for the case of inception blocks inherently takes care of opti-
mization for the convolution layers since they are part of concat layers.

Similar to existing approaches [13, 14, 20], we restricted the pixel intensities of the
perturbation to lie within

[
−10,+10

]
range by choosing ξ in equation (3) to be 10. Figure 1

shows the universal perturbations δ obtained for the networks using the proposed method.
Note that the perturbations are visually different for each network architecture. Figure 2
shows sample perturbed images (x + δ) for GoogLenet from ILSVRC validation set along
with their corresponding original images. Note that the adversarial images are perceptually
indistinguishable from original ones and yet get misclassified by the CNN.

VGG-F CaffeNet GoogLeNet VGG-16 VGG-19
Figure 1: Data independent universal adversarial perturbations crafted by the proposed
method for multiple architectures trained on ILSVRC [19] dataset. Perturbations were
crafted with ξ = 10. Corresponding target network architecture is mentioned below each
image. Images are best viewed in color.

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Chatfield, Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2014

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi{-}Dezfooli, Fawzi, and Frossard} 2016

Citation
Citation
{Sabour, Cao, Faghri, and Fleet} 2015

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

6 MOPURI, GARG, BABU: FAST FEATURE FOOL

marmoset grey whale sturgeon wig acorn sea urchin

tabby turtle butcher shop terrier tarantula wool

Figure 2: Sample original and adversarial image pairs from ILSVRC validation set generated
for GoogLeNet. First row shows original images and corresponding predicted labels, second
row shows the corresponding perturbed images along with their predictions. Note that all of
the shown perturbed images were misclassified.

Table 1: Fooling rates for the proposed perturbations crafted for multiple networks trained
on ILSVRC dataset computed over 50000 validation images. Each row shows fooling rates
for perturbation crafted for a particular network. Each column shows the transfer fooling
rates obtained for a given network. Diagonal values in bold are the fooling rates obtained via
dedicated optimization for each architecture.

VGG-F CaffeNet GoogLeNet VGG-16 VGG-19
VGG-F 81.59% 48.20% 38.56% 39.31% 39.19%
CaffeNet 56.18% 80.92% 39.38% 37.22% 37.62%
GoogLeNet 49.73% 46.84% 56.44% 40.91% 40.17%
VGG-16 46.49% 43.31% 34.33% 47.10% 41.98%
VGG-19 39.91% 37.95% 30.71% 38.19% 43.62%

4.1 Transferability across network architectures

Interesting property of the proposed data independent universal perturbations is that they
transfer not only to other images but also to different network architectures trained on the
same dataset. That is, we compute universal perturbation on one architecture (eg: VGG-
F) and observe its ability to fool on other networks (eg: GoogLeNet). This property is
observed in the case of existing data dependent perturbations [8, 13, 22] as well. However,
transferability of proposed perturbations is a serious issue and needs more attention, as the
perturbation is crafted without any data. Table 1 presents the fooling rates (% of images
for which the predicted label is flipped by adding δ) of the proposed approach including the
transfer rates on multiple networks. Note that all these architectures are trained on ILSVRC
dataset and the fooling rates are computed for the 50000 validation images from the dataset.
Each row in Table 1 shows fooling rates for perturbation crafted for a particular network.
Each column shows the transfer fooling rates obtained for a given network. Diagonal values
in bold are the fooling rates obtained for dedicated optimization for each of the architectures.
Observe that, the perturbations crafted for some of the architectures generalize very well
across multiple networks. For example, perturbation obtained for GoogLeNet (3rd row in

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2014

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2013

MOPURI, GARG, BABU: FAST FEATURE FOOL 7

Table 1) has a minimum fooling rate of 40.17% across all the tested networks. Note that
the average transfer rate of the crafted perturbations for all the five networks is 41.31%
which is very significant given the method has no knowledge about target data distribution.
These results show that our data independent universal perturbations generalize well across
different architectures and are of practical importance.

4.2 Transferability across data
Until now, existing methods have shown the transferability of adversarial perturbations to
images belonging to single distribution (eg: ILSVRC dataset) and multiple networks trained
on same target distribution (some times on disjoint subsets [22]). We now extend the notion
of transferability by considering multiple data distributions. That is, we compute universal
perturbation for a given CNN trained over one dataset (eg: ILSVRC [19]) and observe the
fooling rate for the same architecture trained on another dataset (eg: Places [24]). For this
evaluation, we have considered three network architectures trained on ILSVRC and Places-
205 datasets. Since the proposed objective is data independent and the crafted perturbations
aim at fooling the learned features, we study the extent to which the perturbations fool similar
filters learned on different data. Table 2 presents the change in fooling rates for the proposed
method when evaluated across datasets for multiple networks.

Table 2: Comparing transferability across data. Change in fooling rates for the perturbations
crafted for architectures trained on ILSVRC [19] and evaluated on same architectures trained
on Places-205 [24]. The results clearly show that the absolute change in fooling rate for
UAP [13] is significantly higher than our approach because of the strong data dependence.
Note that the perturbation trained on CaffeNet was tested on AlexNet trained on Places (the
networks differ slightly) and explains the larger drop in case of CaffeNet for the proposed
approach.

CaffeNet* VGG-16 GoogLeNet
UAP 30.05% 18.89% 24.50%
Ours 18.59% 3.96% 6.10%

In order to bring out the effectiveness of the proposed data independent perturbations,
we compared with the performance of data dependent perturbations (UAP) [13]. We have
evaluated the fooling rates of [13], crafted on ILSVRC and transferred to Places-205. The
validation set of Places-205 dataset contains 20500 images from 205 scene categories over
which the fooling rates are computed. Table 2 shows the absolute change in fooling rate (|
rate on ILSVRC - rate on Places-205 |) of the perturbations when evaluated on Places-205
trained architectures. It is clearly observed that the proposed approach on average suffers
less change in the fooling rate compared to data dependent approach. Note that the data
dependent universal perturbations quickly lose their ability to fool the features trained on
different data even for the same architecture. This is understandable as they are crafted in
association with target data distribution (X). Unlike the data dependent approaches, the
proposed perturbations are not tied to any target data and the objective makes them more
generic to fool data from different distributions.

4.3 Initialization with smaller network’s perturbation
In all the above set of experiments we begin our optimization with perturbation initialized
with uniform random distribution

[
− 10,+10

]
. In this section, we investigate the effect of

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2013

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Zhou, Khosla, Lapedriza, Torralba, and Oliva} 2016

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Zhou, Khosla, Lapedriza, Torralba, and Oliva} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

8 MOPURI, GARG, BABU: FAST FEATURE FOOL

a pretrained initialization for δ on the proposed objective and optimization. We consider
perturbations computed for shallow network (eg: VGG-F) as initialization and optimize
for deeper nets (GoogLeNet, VGG-16, VGG-19). Note that all the networks are trained
on ILSVRC dataset. Table 3 shows the obtained fooling rates for other networks when
initialized with VGG-F’s perturbation, and shows the improvement over random initializa-
tion(shown in parentheses). This improvement is understandable as the perturbation from
VGG-F already has some structure and shows transferability on the deeper networks, there-
fore optimization using this offers slight imporvement when compared to random initializa-
tion.

Table 3: Fooling rates for deeper networks initialized with smaller network’s perturbation.
All the networks are trained on ILSVRC dataset. Proposed universal perturbations are com-
puted with VGG-F’s perturbation as initialization. Improvent over random initialization
shown in parenthesis.

Network GoogLeNet VGG-16 VGG-19
Fooling Rate 58.93% (2.49) 49.47% (2.37) 45.87% (2.25)

4.4 Comparison with data dependent universal perturbations
In this section, we investigate how the proposed perturbations compare to data dependent
counterparts. We consider two cases, when the data dependent approach (UAP[13]): (i) has
access to the target dataset, and (ii) uses images form a different dataset instead of the target
dataset.

4.4.1 With access to target dataset

Note that the data dependent methods [13] when utilize samples (X) from target data distri-
bution to craft the perturbations, they are expected to demonstrate higher fooling rates on the
target datasets. However, we compare the fooling rates for different sample sizes (X) versus
our no data fooling rate performance. Figure 3 presents the comparison for three networks
trained on ILSVRC dataset evaluated on 50000 validation images. As evaluated in [13], we
have computed fooling performance for 500,1000,2000, 4000 and 10000 samples from the
training data for them. Note that the fooling performance of [13] improves monotonically
with the sample (X) size for all the networks. It shows the strong association of their pertur-
bations to target data distribution and lose their ability to fool when evaluated on different
data though the target architectures are similar. On the other hand, the proposed perturba-
tions, as they do not utilize any data, they fool networks trained on other data equally well
(Table 2).

4.4.2 Without the access to target dataset

While it is not a reasonable assumption to have access to the training data, we can argue that
the data dependent methods (UAP) can use images from an arbitrary dataset and train the
perturbations. In this section, we investigate by learning UAPs for a target architecture using
an arbitrary dataset. We have considered ILSVRC and Places-205 datasets.

Table 4 shows the fooling rates on ILSVRC trained networks, where we used Places-205
data to generate the perturbation for UAP [13] and Table 5 shows the reverse scenario. Note

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

MOPURI, GARG, BABU: FAST FEATURE FOOL 9

81.59 80.92

56.44

39.32 38.78

31

52.25

43.61
37

61.75

51.15 49

64.14

54.96

69

93.7 93.3

78.8

VGG-F CAFFENET GOOGLENET

Fo
o

lin
g

R
at

e

Fooling Rate vs. Sample Size (X)

Ours - 0 UAP[12] - 500 UAP[12] - 1000 UAP[12] - 2000 UAP[12] - 4000 UAP[12] - 10000

Figure 3: Comparision of fooling rates for the proposed approach with UAP [13] for multiple
networks trained on ILSVRC [19]. Legend shows the size of (X) sampled from training
data. Note that, due to their strong data dependence the performance of UAP [13] increases
monotonically with size of X for all networks. This strong data dependence explains the
larger drop in performance of UAP when tested on the same architecture trained on different
datasets, as shown in Table 2.

that in both cases our approach just needs the target network and no data. The numbers
are computed on the validation set of the corresponding datasets. These experiments clearly
show that the data dependent perturbations [13] are strongly tied to the target dataset and
experience a significant drop in performance if the same is unavailable. It is also seen that
this drop is more severe with larger networks (GoogLeNet). On the contrary, our approach
without using any data results in significantly better performance for CNNs trained on both
datasets.

Table 4: Fooling rates obtained when
UAPs [13] are trained and tested for
ILSVRC architectures using the data from
Places-205. Note that our approach doesn’t
require any data.

Ours UAP [13]
CaffeNet 80.92% 73.09%
GoogleNet 56.44% 28.17%

Table 5: Fooling rates obtained when
UAPs [13] are trained and tested for
Places-205 architectures using the data from
ILSVRC. Note that our approach doesn’t re-
quire any data.

Ours UAP [13]
CaffeNet 87.61% 77.21%
GoogleNet 78.08% 52.53%

4.4.3 Convergence time

The time of convergence for the proposed optimization is compared with that of data depen-
dent universal perturbations approach [13] in Table 6. We have utilized the implementation
provided by the authors of [13] that samples 10000 training images. Convergence time is
reported in seconds for both the approaches on three different network architectures trained
on ILSVRC dataset. Note that the proposed approach takes only a small fraction of time
taken by [13]. We have run the timing experiments on an NVIDIA GeForce TITAN-X GPU
with no other jobs on the system.

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

10 MOPURI, GARG, BABU: FAST FEATURE FOOL

Table 6: Comparison of the time of convergence for UAP [13] and the proposed approch. It
is observed that the proposed approach takes only a fraction of time compared to UAP across
different network architechtures.

VGG-F CaffeNet GoogLeNet
UAP [13] 3507.33s 3947.36s 13780.72s
Ours 69.49s 54.37s 127.66s

4.5 Implementation details
In this section, for the ease of reproducibility we explain the implementation details of the
proposed approach. We conducted all experiments using the TensorFlow [5] framework. As
the objective is to craft universal perturbations, for each network we extracted the activations
at all convolution or concat (for inception) layers and formulated the loss as the log of product
of activations at different layers (eq 3), we minimized the negative of this and so the loss is
unbounded in the negative direction. We used the Adam [10] optimizer with a learning rate
of 0.1 with other parameters set at their default values. We monitor the loss to see when it
saturates and check validation over a held out set of 1000 images to save the perturbation.
Since, the optimization updates just the input (δ) which is restricted to [-10 10] range, it gets
saturated very quickly. Therefore, to avoid later updates from being ignored we periodically
rescale the perturbation to [-5 5] range and then continue the optimization. Empirically we
found rescaling at every 300 iterations to work better and we use that for all our experiments.
Project codes are available at https://github.com/utsavgarg/fast-feature-fool.

5 Conclusion
We have presented a simple and effective procedure to compute data independent universal
adversarial perturbations. The proposed perturbations are quasi-imperceptible to humans but
they fool state-of-the-art CNNs with significantly high fooling rates. In fact, the proposed
perturbations are triply universal: (i) the same perturbation can fool multiple images form
the target dataset over a given CNN, (ii) they demonstrate transferability across multiple net-
works trained on same dataset and (iii) they surprisingly retain (compared to data dependent
perturbations) the ability to fool CNNs trained on different target dataset.

Experiments (sections 4.1 and 4.2) demonstrate that data independent universal adver-
sarial perturbations can pose a more serious threat when compared to their data dependent
counterparts. They can enable the attackers not to be concerned about either the dataset on
which the target models are trained or the internals of the model themselves. At this point
in time, a more rigorous study (in case of extreme depth, presence of advanced regularizers,
etc.) about the data independent aspect of the adversarial perturbations is of utmost impor-
tance. It should also be complemented simultaneously with the efforts to develop methods
to learn more robust models. However, we believe our work opens new avenues into the
intriguing aspects of adversarial machine learning with a data independent perspective.

6 Acknowledment
This work was partly supported by Robert Bosch Centre for Cyber Physical Systems (RBC-
CPS) Research grant, Indian Institute of Science, Bangalore.

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2016

Citation
Citation
{etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Kingma and Ba} 2014

https://github.com/utsavgarg/fast-feature-fool

MOPURI, GARG, BABU: FAST FEATURE FOOL 11

References
[1] Yoshua Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1),

January 2009.

[2] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at
test time. In Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases, pages 387–402. Springer, 2013.

[3] Battista Biggio, Giorgio Fumera, and Fabio Roli. Pattern recognition systems under
attack: Design issues and research challenges. International Journal of Pattern Recog-
nition and Artificial Intelligence, 28(07):1460002, 2014.

[4] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of
the devil in the details: Delving deep into convolutional nets. In Proceedings of the
BMVC, 2014.

[5] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL http://tensorflow.org/. Software available from tensor-
flow.org.

[6] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ robustness
to adversarial perturbations. arXiv preprint arXiv:1502.02590, 2015.

[7] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness
of classifiers: from adversarial to random noise. In NIPS, 2016.

[8] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. CoRR, abs/1412.6572, 2014.

[9] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D.
Tygar. Adversarial machine learning. In Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence, AISec ’11, 2011.

[10] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS. 2012.

[12] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning
at scale. CoRR, abs/1611.01236, 2016.

[13] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Universal adversarial perturbations. arXiv preprint arXiv:1610.08401, 2016.

[14] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A
simple and accurate method to fool deep neural networks. in CVPR, 2016.

[15] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. 2015.

http://tensorflow.org/

12 MOPURI, GARG, BABU: FAST FEATURE FOOL

[16] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings. In
Security and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages 372–387.
IEEE, 2016.

[17] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Ce-
lik, and Ananthram Swami. Practical black-box attacks against deep learning systems
using adversarial examples. CoRR, abs/1602.02697, 2016.

[18] Andras Rozsa, Ethan M Rudd, and Terrance E Boult. Adversarial diversity and hard
positive generation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 25–32, 2016.

[19] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[20] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J Fleet. Adversarial manipula-
tion of deep representations. arXiv preprint arXiv:1511.05122, 2015.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014.

[22] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. CoRR,
abs/1312.6199, 2013. URL http://arxiv.org/abs/1312.6199.

[23] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014.

[24] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Antonio Torralba, and Aude Oliva.
Places: An image database for deep scene understanding. CoRR, abs/1610.02055,
2016.

http://arxiv.org/abs/1312.6199

