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Abstract

Model compression and knowledge distillation have been successfully applied for
cross-architecture and cross-domain transfer learning. However, a key requirement is
that training examples are in correspondence across the domains. We show that in many
scenarios of practical importance such aligned data can be synthetically generated using
computer graphics pipelines allowing domain adaptation through distillation. We apply
this technique to learn models for recognizing low-resolution images using labeled high-
resolution images, non-localized objects using labeled localized objects, line-drawings
using labeled color images, etc. Experiments on various fine-grained recognition datasets
demonstrate that the technique improves recognition performance on the low-quality data
and beats strong baselines for domain adaptation. Finally, we present insights into work-
ings of the technique through visualizations and relating it to existing literature.

1 Introduction
One of the challenges in computer vision is to build models for recognition that are robust
to various forms of degradation of the quality of the signal such as loss in resolution, lower
signal-to-noise ratio, poor alignment of the objects in images, etc. For example, the perfor-
mance of existing models for fine-grained recognition drop rapidly when the resolution of
the input image is reduced (see Table 1).
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Figure 1: The objective of the CQD en-
courages agreement between g(z) and f (x)
for each z = T (x).

In many cases abundant high-quality data
is available at training time, but not at test
time. For example, one might have high-
resolution images of birds taken by a pro-
fessional photographer, while an average user
might upload blurry images taken from their
mobile devices for recognition. We propose a
simple and effective way of adapting models
in such scenarios. The idea is to synthetically
generate data of the second domain from the
first and forcing agreement between the model
predictions across domains (Figure 1). The approach is a simple generalization of a tech-
nique called model compression, or knowledge distillation [2, 8, 22].
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The main contribution of our work is to identify several practical scenarios where this
idea can be applied. The simplest case is when domain B is a “degraded” version of domain
A. For example, when domain B has lower resolution than A, or has no color information.
It is easy to generate aligned data by applying known transformations T to obtain paired data
of the form [x,T (x)]. We also identify some non-trivial cases, such as when domain A has
images of objects with known bounding-boxes while domain B does not. In such situations,
a common approach is to train an object detector to localize the object and then classify the
image. Our approach offers an alternate strategy where we first train a model on the cropped
images and distill it to a model on full images. Experiments show that the improvements are
significant, and in some cases matching the results using an object detector. Similarly, we can
apply our technique to recognize distorted images as an alternative to Spatial Transformer
Networks [25]. We call our approach Cross Quality Distillation (CQD).

We perform experiments on recognizing fine-grained categories of birds and cars us-
ing off-the-shelf Convolutional Neural Networks (CNNs). Experiments are performed on
improving the recognition of low-quality data using high-quality data with various kinds
of degradation (Figure 3). This is a challenging task even on the high-quality images, but
performance of the models are often dramatically lower when directly applied on the low-
quality images. Our experiments show that CQD leads to significant improvements over a
model trained directly on the low-quality data and other strong baselines for domain adap-
tation, such as fine-tuning and “staged training” [38]. The model works across a variety
of tasks and domains without any task-specific customization. Finally, we present insights
into why the method works by relating it to the area of curriculum learning [3] and through
visualizations of the learned models.

2 Related Work

Knowledge distillation The proposed approach is inspired by “knowledge distillation”
technique [22] where a simple classifier g, e.g. a shallow neural network, is trained to imitate
the outputs of a complex classifier f , e.g. a deep neural network (Figure 2a). Their experi-
ments show that the simple classifier generalizes better when provided with the outputs of the
complex classifier during training. This is based on an idea pioneered by Bucilǎ et al. [8] in
a technique called “model compression” where simple classifiers such as linear models were
trained to match the predictions of a decision-tree ensemble, leading to compact models.
Thus, CQD can be seen as a generalization of model compression when the domains of the
two classifiers A and B are different (Figure 2d). “Learning without forgetting” [30] shows
that applying distillation on transfer learning can outperform fine-tuning, and has similar
performance with multitask learning (joint training) but without using the data of original
task. In this paper, we focus on domain adaptation problem where the tasks are the same but
with paired data from different domains.

Learning with privileged Information The framework of learning with privileged infor-
mation (LUPI) [48] (Figure 2b) deals with the case when additional information is available
at training time but not at test time. The general idea is to use the side information to guide
the training of the models. For example, the SVM+ approach [48] modifies the margin for
each training example using the side information to facilitate the training on the input fea-
tures. Most of these approaches require an explicit representation of the side information,
i.e., the domainA can be written as a combination of domain B and side information domain
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(a) model compression (b) LUPI (c) domain adaptation (d) CQD

Figure 2: Illustration of the relationships between CQD and other techniques. An arrow
points to the direction of variable dependency, and dotted lines denote that the variables
are observed together. (a) Model compression: g is trained to mimic the outputs of f on
the same input x. (b) LUPI: g is trained with side information s observed together with
input z. (c) Domain adaptation: x and z are drawn independently from different domains
but the tasks are the same, i.e. y,y′ ∈ Y . (d) CQD: can be seen as (i) a generalization of
model compression where the inputs of the two functions are different, (ii) a specialization
of domain adaptation when z can be synthesized from x.

S. For example, such models have been used to learn classifiers on images when additional
information about them such as tags and attributes are available at training time. We note
that Lopez-Paz et al. [35] made a similar observation unifying distillation and learning with
privileged information.

Domain adaptation Techniques for domain adaptation addresses the performance loss due
to domain-shift from training to testing, leading to degradation in performance. For example,
visual classifiers trained on clutter-free images do not generalize well when applied to real-
world images. Typically it is assumed that a large number of labeled examples exist for
the source domain, but limited to no labeled data is available for the target domain. To
increase feature generalization, some approaches [34, 45] minimize the domain discrepancy
through Maximum Mean Discrepancy (MMD) [20]. Other approaches learn a parametric
transformation to align the representations of the two domains [17, 28, 40, 44]. Bousmalis et
al. [5] combines encoder-decoder structure and different loss functions to learn shared and
domain-specific features explicitly. Ganin et al. [18] proposed the domain-adversarial neural
networks (DANN) which learns representations by competing with an adversarial network
trained to discriminate the domains. Instead of learning domain-invariant features, some
approaches [6, 32, 47] use Generative Adversarial Networks (GANs) to generate images of
target domain for unsupervised domain adaptation.

When some labeled data is available for the target domain (supervised case), methods for
multi-task learning [9] are also applicable, including ones that are “frustratingly easy” [13].
CQD is a special case of supervised domain adaptation where we have correspondence be-
tween samples from the source and target domain, i.e., in supervised domain adaptation
we have training data of the form (xi,yi),xi ∈ A and (z j,y j),z j ∈ B, where xi and z j are
drawn independently from the source and target domain respectively, and yi,y j ∈ Y . In
CQD we know that xi and zi are two views of the same instance. This provides richer in-
formation to adapt models across domains. Our experiments show that distillation leads to
greater improvements in accuracy compared to fine-tuning, a commonly used approach for
domain adaptation, and “staged training” [38], specifically designed for scenarios like ours
where high-quality data is available at training time. The idea of transferring task knowledge
through distillation has been applied for simultaneous domain adaptation and task transfer
by Tzeng et al. [46]. They tried to match the average predicted label scores across examples
in source domain to that of the target domain as instances lack one-to-one correspondence.
In contrast, paired data in CQD allows matching of label distributions on per-instance basis.
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Cross modal learning When multiple modalities of images are simultaneously available,
the information about one domain can guide representation learning for another domain.
Recent works have used a similar idea to ours to learn representations of depth from color
using RGB-D data [21, 23], representations of video from ambient sound [37] and vice-
versa [1], as well as visual representations through self-supervised colorization [29, 54].
Our work identifies several novel situations when distillation can be applied effectively. For
example, we train a model to recognize distorted images of birds by distilling a model trained
on non-distorted ones.

3 CQD Framework
Assume that we have data in the form of (xi,zi,yi), i = 1,2, . . . ,n where xi ∈ A is the high-
quality data, zi ∈ B is the corresponding low-quality data, and yi ∈ Y is the target label. In
practice only the high-quality data xi is needed since zi can be generated from xi. The idea
of CQD is to first train a model f to predict the labels on the high-quality data and train a
second model g on the low-quality data by forcing an agreement between their corresponding
predictions by minimizing the following objective (Fig. 1):

n

∑
i=1
L1 (g(zi),yi)+λ

n

∑
i=1
L2 (g(zi), f (xi))+R(g). (1)

Here, L1 and L2 are loss functions, λ is a trade-off parameter, and R(g) is a regular-
ization term. The intuition for this objective is that by imitating the prediction of f on the
high-quality data g can learn to generalize better on the low-quality data.

All our experiments are on multi-class classification datasets and we model both f and
g using multi-layer CNNs, pre-trained on ImageNet dataset, with a final softmax layer to
produce class probabilities p = σ(z), i.e., pk = ezk/∑ j ez j . We use the cross-entropy loss
L1(p,q) = ∑i qi log pi, and the cross-entropy of the predictions smoothed by a temperature
parameter T for L2(p,q) = L1 (σ (log(p)/T ) ,σ (log(q)/T )). When T = 1, this reduces
to the standard cross-entropy loss. We also found that squared-error between the logits (z)
worked similarly. More details can be found in the experiments section.

4 Experiments
We begin by describing datasets, models, and training protocols used in our experiments.
Section 4.1 describes the results of various experiments on CQD. Section 4.2 describes ex-
periments for simultaneous quality distillation and model compression. Finally, Section 5
visualizes the distilled models to provide an intuition of why and how distillation works.

Datasets We perform experiments on the CUB 200-2011 dataset [50] consisting of 11,788
images of 200 different bird species, and on the Stanford cars dataset [26] consisting of
16,185 images of 196 cars of different models and makes. Classification requires the ability
to recognize fine-grained details which is impacted when the quality of the images is poor.
Using the provided images and bounding-box annotations in these datasets, we create sev-
eral cross-quality datasets which are described in detail in the Section 4.1 and visualized in
Figure 3. We use the training and test splits provided in the datasets.
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Figure 3: Examples images from various cross-quality datasets used in our experiments.
Images are from the birds [50] and cars dataset [26]. In each panel, the top row shows ex-
amples of the high-quality images and the bottom row shows examples of the corresponding
low-quality images. These include (a) localized and non-localized images, (b) high- and
low-resolution images, (c) color and edge images, and (d) regular and distorted images.

Models In our experiments, both f and g are based on CNNs pre-trained on the ImageNet
dataset [14]. In particular we use vgg-m [10] and vgg-vd models [42] which obtain com-
petitive performance on the ImageNet dataset. While there are better performing models for
these tasks, e.g. those using novel model architectures[12, 25, 31, 41], and using additional
annotations to train part and object detectors [4, 7, 52, 53], we perform experiments with
simple models in the interest of a detailed analysis. However, we believe that our method is
general and can be applied to other recognition architectures as well.

Methods Below we describe various methods used in our experiments:

1. Train on A: Starting from the ImageNet pre-trained model, we replace the 1000-way
classifier (last layer) with a k-way classifier initialized randomly and then fine-tune the entire
model with a small learning rate on domain A. This is a standard way of transfer learning
using deep models, and has been successfully applied for a number of vision tasks including
object detection, scene classification, semantic segmentation, texture recognition, and fine-
grained classification [11, 16, 19, 31, 33, 36, 39].

2. Train on B: Here we fine-tune the ImageNet pre-trained model on domain B.

3. Train on A+B: Here we fine-tune the model on domain A combined with domain B.
Data augmentation is commonly used while training CNNs to make them more robust.

4. Train onA, then train on B: This is a combination ofA and B where the fine-tuning on
domain B is initialized from the model fine-tuned on domain A. This “staged training” was
recently proposed in [38] as a state-of-the-art technique for low-resolution image recogni-
tion. However, this method can only be applied when both f and g have the same structure.
This is denoted by A,B in our experiments.

5. Cross quality distillation (CQD): Here we use a model f trained on domainA (Method 1)
to guide the learning of a second model g on domain B using CQD (Equation 1). Like be-
fore, when f and g have identical structure we can initialize g from f instead of the ImageNet
model with random weights for the last layer.

Optimization details There are two parameters, T and λ , in the CQD model. The opti-
mal value we found on validation set is T = 10 for all experiments, and λ = 200 for the
CUB, λ = 50 for the CARS dataset. The optimization in Equation 1 was solved using batch
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Description Method Test Local. Resolution Edge Dist. Local. + Res.
CUB CUB CARS CUB CARS CUB CUB

Upper bound A A 67.0 67.0 59.3 67.0 59.3 67.0 67.0
No adaptation A B 57.4 39.4 7.6 1.9 4.2 49.7 24.9
Fine-tuning B B 60.8 61.0 41.6 29.2 45.5 58.4 46.2

Data augment. A+B B 63.6 62.2 47.3 32.5 51.3 61.7 51.7
Staged training A,B B 62.4 62.3 48.4 30.4 50.1 60.9 50.4

Proposed CQD B 64.4 64.4 48.8 34.1 51.5 63.0 52.7

Table 1: Cross quality distillation results. Per-image accuracy on birds dataset (CUB) [50]
and Stanford cars dataset (CARS) [26] for various methods and quality losses. All results
are using f = g = vgg-m model. Training on A and testing on A is the upper bound of
the performance in each setting (top row). Training on A and testing on B (no adaptation)
often leads to a significant loss in performance. The proposed technique (CQD) outperforms
fine-tuning (B), data augmentation (A + B), and staged training (A,B) [38] on all datasets.

stochastic gradient descent, with learning rate starting from 0.0005 (0.0005 for CUB,
0.001 for CARS) changing linearly to 0.00005 after 30 epochs. Other parameters are
as follows: momentum=0.9, weight decay=0.0005, batch size=128 (=32
when training vgg-vd). Instead of cross-entropy we also tried squared-distance on the log-
its z as the loss function [2]. There was no significant difference between the two and we used
cross-entropy for all our experiments. Our implementation is based on MatConvNet [49].

4.1 Cross Quality Distillation Results

We experiment with five different kinds of quality reduction to test the versatility of the
approach. For each case we report per-image accuracy on the test set provided in the dataset.
Results using the vgg-m model for both function f and g are summarized in Table 1 and are
described in detail below. The main conclusions are summarized in the end of this section.

4.1.1 Localized to Non-localized Distillation

To create the high-quality data, we use the provided bounding-boxes in the CUB dataset to
crop the object in each image. In this dataset, birds appear in various locations and scales and
in clutter. Therefore, vgg-m trained and evaluated on the localized data obtains 67.0% accu-
racy, but when applied the non-localized data obtains only 57.4% accuracy (Table 1). When
the model is trained on the non-localized data the performance improves to 60.8%. Staged
training A,B improves the performance to 62.4%, but CQD improves further to 64.4%.

For this task another baseline would be to train an object detector which first localizes
the objects in images. For example, Krause et al. [27] report around 2.6% drop in accuracy
(67.9%→ 65.3%) when a R-CNN based object detector is used to estimate bounding-boxes
of objects at test time instead of using true bounding-boxes (Table 2 in [27], CNN+GT
BBox+ft vs. R-CNN+ft). Remarkably, using CQD we observe only 2.6% drop in perfor-
mance (67.0%→ 64.4%) without running any object detector. Moreover, our method only
requires a single CNN evaluation and hence is faster. In Section 5 we provide insights into
why the distilled model performs better on non-localized images.
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4.1.2 High to Low Resolution Distillation

Here we evaluate how models perform on images of various resolutions. For the CUB dataset
we use the localized images resized to 224×224 for the high-resolution images, downsample
to 50× 50, and upsample to 224× 224 again for the low-resolution images. For the CARS
dataset we do the same but for the entire image (bounding-boxes are not used).

The domain shift leads to large loss in performance here. On CUB the performance of
the model trained on high-resolution data goes down from 67.0% to 39.4%, while the perfor-
mance loss on CARS is even more dramatic going from 59.3% to a mere 7.6%. Man-made
objects like cars contain high-frequency details such as brand logos, shapes of head-lights,
etc., which are hard to distinguish in the low-resolution images. A model trained on the low-
resolution images does much better, achieving 61.0% and 41.6% accuracy on birds and cars
respectively. Color cues in the low-resolution are much more useful for distinguishing birds
than cars which might explain the better performance on birds. Using CQD the performance
improves further to 64.4% and 48.8% on the low-resolution data. On CARS the effect of
both staged training and CQD is significant, leading to more than 7% boost in performance.

4.1.3 Color to Edges Distillation

Recognizing line-drawings can be used for retrieval of images and 3D shapes using sketches
and has several applications in search and retrieval. As a proxy for line-drawings, we test
the performance of various methods on edge images obtained by running the structured edge
detector [15] on the color images. In contrast to low-resolution images, edge images contain
no color information but preserve most of the high-frequency details. This is reflected in the
better performance of the models on CARS than CUB dataset (Table 1). Due to the larger
domain shift, a model trained on color images performs poorly on edge images, obtaining
1.9% and 4.2% accuracy on CUB and CARS receptively.

Using CQD the performance improves significantly from 45.5% to 51.5% on CARS.
On the CUB dataset the performance also improves from 29.2% to 34.1%. The strong im-
provements on recognizing line drawings using distillation and staged training suggests that
a better strategy to recognize line drawings of shapes used in various sketch-based retrieval
applications [43, 51] is to first fine-tune the model on realistically rendered 3D models (e.g.
with shading and texture) then distill the model to edge images.

4.1.4 Non-distorted to Distorted Distillation

Here the high-quality dataset is the localized bird images. To distort an image as seen in
Figure 3d, we use the thin plate spline transformation with uniform grid of 14×14 control
points. Each control point is mapped from a regular grid to a point randomly shifted by
Gaussian distribution with zero mean and 4 pixels variance. Recognizing distorted images is
challenging, and the performance of a model trained and evaluated on such images is 8.6%
worse (67.0%→ 58.4%). Using CQD the performance improves from 58.4% to 63.0%.

On this dataset a baseline would be to remove the distortion by alignment methods such
as congealing [24], or use a model that estimates deformations during learning, such as
spatial transformer networks [25]. These methods are likely to work well but they require
the knowledge of the space of transformations and are non-trivial to implement. On the other
hand, CQD is able to nearly halve the drop in performance of the same CNN model without
any knowledge of the nature of distortion and is easy to implement. Thus, CQD may be used
whenever we can model the distortions algorithmically. For example, computer graphics
techniques can be used to model the distortions from underwater imaging.
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4.1.5 Color to Non-localized and Low Resolution Distillation

Here the images has two different degradations at the same time: the low-quality data is low
resolution images with the object in clutter, where the high-quality data is high resolution
images cropped by the bounding boxes provided in the CUB dataset. Without adaptation,
the performance drops to 24.9%, more than when only have one type of degradation (57.4%
and 39.4% separately). We want to stress that the type of degradation in domain B can be
arbitrary, as long as we have the instance-level correspondence between different domains
which can be done by applying known transformations. As shown in the last column of
Table 1, CQD improves 6.5% (46.2%→ 52.7%) over fine-tuning.

Summary In summary we found that domain adaptation is critical since the performance
of models trained on high-quality data is poor on the low-quality data. Data augmentation
(A+B) and staged training (A,B) are quite effective, but CQD provides better improvements
suggesting that adapting models on a per-example basis improves knowledge transfer across
domains. CQD is robust and only requires setting a handful of parameters, such as T and
λ , across a wide variety of quality losses. In most cases, CQD cuts the performance gap
between the high- and low-quality data in half.

4.2 Simultaneous CQD and Model Compression
In this section we experiment if a deeper CNN trained on high-quality data can be distilled
to a shallow CNN trained on the low-quality data. This is the most general version of CQD
where both the domains and functions f ,g change. The formulation in Equation 1 does not
require f and g to be identical. However, A+B and A,B baselines cannot be applied here.

We perform experiments on the CUB dataset using localized and non-localized images
described earlier. The deeper CNN is the sixteen-layer “very deep” model (vgg-vd) and
the shallow CNN is the five-layer vgg-m model used in the experiments so far. The optimal
parameters obtained on the validation set for this setting were T = 10,λ = 50.

training→ testing
f → g A→ A B→ B CQD→ B

vgg-m→ vgg-m 67.0 60.8 63.7
vgg-vd→ vgg-m - - 64.6
vgg-vd→ vgg-vd 74.9 69.5 72.4

Table 2: Accuracy of various techniques on the CUB
localized/non-localized dataset.

The results are shown in Ta-
ble 2. The first row contains re-
sults using CQD for vgg-m model
which are copied from Table 1 for
ease of comparison. The third row
shows the same results using the
vgg-vd model. The accuracy is
higher across all tasks. CQD leads
to an improvement of 2.9% (69.5%→ 72.4%) for the deeper model. The middle row shows
results for training the vgg-mmodel on non-localized images from a vgg-vdmodel trained
on the localized images. This leads to a further improvement of 0.9% (63.7%→ 64.6%) sug-
gesting that model compression and cross quality distillation can be seamlessly combined.

5 Understanding Why CQD Works
Relation to curriculum learning Curriculum learning is the idea that models general-
ize better when training examples are presented in the order of their difficulty. Bengio
et al. [3] showed a variety of experiments where non-convex learners reach better optima
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when more difficult examples are introduced gradually. In one experiment a neural net-
work was trained to recognize shapes. There were two kinds of shapes: BasicShapes
which are canonical circles, squares, and triangles, and GeomShapes which are affine dis-
tortions of the BasicShapes on more complex backgrounds. When evaluated only on
test set of GeomShapes, the model first trained on BasicShapes then fine-tuned on
GeomShapes, performed better than the model only trained on GeomShapes, or the one
trained with a random ordering of both types of shapes.

We observe a similar phenomenon when training CNNs on low-quality data. For ex-
ample, on the CARS dataset, staged training [38] A,B outperforms the model trained on
low-resolution data B, when evaluated on the low-resolution data B (48.4% vs. 41.6%).
Since low-quality data is more difficult to recognize, introducing them gradually might ex-
plain the better performance of the staged training and CQD techniques. Additional benefits
of CQD come from the fact that paired high- and low-quality images allowing better knowl-
edge transfer through distillation.

Understanding CQD through gradient visualizations Here we investigate how the knowl-
edge transfer occurs between a model trained on localized images and non-localized images.
Our intuition is that by trying to mimic the model trained on the localized images a model
must learn to ignore the background clutter. In order to verify this, we compute the gradi-
ent of log-likelihood of the true label of an image with respect to the image using the CQD
model and B model, both are trained only on non-localized images. Figure 4-left shows
the gradients for two different images. The darkness of each pixel i is proportional to the
norm of the gradient vector at that pixel ||Gi||2, Gi = [Gr

i ,G
g
i ,G

b
i ] for r,g,b color channels.

The gradients of the CQD model are more contained within the bounding-box of the object,
suggesting a better invariance to background clutter. As a further investigation we compute
the fraction of gradients within the box: τ = (∑i∈box ||Gi||2) / (∑i∈image ||Gi||2). This ratio
is a measure of how localized the relevant features are within the bounding-box. A model
based on a perfect object detector will have τ = 1. We compute τ for 1000 images for both
CQD and B models and visualize them on a scatter plot as seen in Figure 4-right. On average
the CQD model has higher τ than B model, confirming our intuition that the CQD model is
implicitly able to localize objects.

6 Conclusion
We proposed a simple generalization of distillation, originally used for model compression,
for cross quality model adaptation. We showed that CQD achieves superior performance than
domain adaption techniques such as fine-tuning on a range of tasks, including recognizing
low-resolution images, non-localized images, edge images, and distorted images. Our ex-
periments suggest that recognizing low-quality data is a challenge, but by developing better
techniques for domain adaptation one can significantly reduce the performance gap between
the high- and low-quality data. We presented insights into why CQD works by relating it to
various areas in machine learning and by visualizing the learned models.

Training highly expressive models with limited training data is challenging. A common
strategy is to provide additional annotations to create intermediate tasks that can be easily
solved. For example, annotations can be used to train part detectors to obtain pose, view-
point, and location-invariant representations, making the fine-grained recognition problem
easier. However, these annotation-specific solutions do not scale as new types of annotations
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Figure 4: Left: Image and gradient of the image with respect to the true class label for the
model trained on B (non-localized images) and CQD (from a model trained on localized
images). Darker pixels represent higher gradient value. The gradients of the model trained
using CQD are more focused on the foreground object. Right: The scatter plot of the fraction
of total gradient within the bounding-box for 1000 training images for the two models.

become available. An alternate strategy is to use CQD by simply treating these annotations
as additional features, learning a classifier in the combined space of images and annotations,
and then distilling it to a model trained on images only. This strategy is much more scalable
and can be easily applied as new forms of side information, such as additional modalities and
annotations, become available over time. In future work, we aim to develop strategies for
distilling deep models trained from richly-annotated training data for better generalization
from small training sets.
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