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Abstract

We propose a new class of energies for segmentation of multiple foreground objects
with a common shape prior. Our energy involves infinity constraints. For such energies
standard expansion algorithm has no optimality guarantees and in practice gets stuck
in bad local minima. Therefore, we develop a new move making algorithm, we call
double expansion. In contrast to expansion, the new move allows each pixel to choose a
label from a pair of new labels or keep the old label. This results in an algorithm with
optimality guarantees and robust performance in practice. We experiment with several
types of shape prior such as star-shape, compactness and a novel symmetry prior, and
empirically demonstrate the advantage of the double expansion.

1 Introduction
Image segmentation is one of the fundamental problems in computer vision. It is commonly
addressed using energy minimization and regularization is often used to restrict the search
space of possible solutions. Length [1, 9, 14], curvature [16] and shape regularization have
been used to rule out solutions inconsistent with the assumed prior. Some notable shape
priors are connectivity [17, 24], star-shape [11, 22], convexity [10, 20], part-based [8, 15,
25]. Most are traditionally used in the context of binary segmentation, but recently shape
prior has also been incorporated in multi-object segmentation framework [6, 12, 13, 18].

We propose a new class of pairwise multilabel energies for simultaneous segmentation of
multiple foreground objects with shape priors. We assume that objects do not occlude each
other, since applying a shape prior to an occluded part is not well-defined. Using pairwise
potentials only, we cannot distinguish between overlapping and touching pairs of objects.
Our model therefore prohibits object touching as well and enforces at least one-pixel-wide
background strip around each object. In practice, when objects do touch in the image, they
will be separated by a thin background strip without significantly affecting the segmentation.

Prohibiting occlusion involves infinity constraints. For such energies, standard expansion
algorithm has no optimality guarantees and can get stuck in bad local minima. We propose
double expansion, a new move making algorithm. In contrast to α-expansion where each
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pixel chooses between α and the old label, double α-expansion allows each pixel to choose
between three labels: α , background and the old label. The addition of the background label
allows simultaneously expanding on α and correcting the shapes of other objects. Expand-
ing on α without this correction may violate the shape of other objects yielding expansion
infeasible. Expansion is a special case of double expansion, and, therefore, double expan-
sion is guaranteed to be at least as effective as expansion. Moreover, double expansion has
theoretical optimality guarantees and avoids poor local minima in practice. In [15, 23] there
are moves that are similar to double expansion. However, in [23] moves are not submodular,
with no local minimum guarantee. Moves in [15] can be applied only to a subset of pixels.

Also related to our work are the methods in [12, 13, 18]. In [12] they formulate a multi-
object segmentation energy with a “hedgehog” shape prior, but optimize with standard ex-
pansion. In [13] they propose more general path moves, but have no optimality guarantees.

We experiment with the star shape [11, 22] and compact shape [5] priors and propose a
novel symmetry shape prior. Symmetry is an important cue in human visual system for de-
tecting objects [21]. For symmetry prior, we assume that objects have approximate bilateral
reflection symmetry. We empirically compare double expansion to the standard expansion
for all three shape priors. Our results demonstrate that double expansion avoids poor local
minima and is very robust with respect to expansion label order.

2 Energy
We now describe the multilabel segmentation energy. Let P ⊂Ω be a set of image pixels and
L= {0,1, . . . ,m} be the set of labels, with 0 denoting the background and the rest denoting
the foreground objects. Let xp ∈ L be a multilabel variable corresponding to pixel p, and
x = (xp|p ∈ P) be a vector of all variables. Then the energy is defined as follows:

f (x) = f a(x)+ f r(x)+ f s(x), (1)

where f a(x) is the appearance term, f r(x) is the boundary regularization term and f s(x) is
the shape prior term. The appearance term is a unary term given by

f a(x) = ∑
p∈P

up(xp) = ∑
p∈P
−logPr(cp|θ xp), (2)

where cp is the color of pixel p and θ l , l ∈ L is the appearance model for label l.
The boundary regularization term f r(x) enforces background pixels around each fore-

ground label. Let N be a standard 4- or 8- neighborhood system of ordered pairs, then

f r(x) = ∑
(p,q)∈N

vpq(xp,xq), where (3)

vpq(xp,xq) =


0, if xp = xq

wpq, if (xp = 0∨ xq = 0)∧ (xp 6= xq)

∞ otherwise.

Here wpq > 0 denotes either edge sensitive or uniform length term.
We now turn to shape constraints. Let S i be a set of ordered pixel pairs that are involved

in shape constraints for object i. Then the shape prior f s,i(x) for object i is given by

f s,i(x) = ∑
(p,q)∈Si

hi
pq(xp,xq) (4)
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Figure 1: Illustration of (a) star, (b) compact and (c) symmetry shape priors for an object.

and f s(x) integrates these constraints for all objects f s(x) = ∑i f s,i. Depending on the shape
prior, set S i is determined either with respect to given object centers (for compact and star
shape priors) or axes of symmetry. Potentials hi

pq assign a penalty to configurations that
violate the shape prior constraints, see details in Sec. 2.1,2.2,2.3.

2.1 Star Shape Prior

The star shape prior in [22] assumes that centers oi for each object 0 < i ≤ m are given.
Fig. 1(a) illustrates the star constraints for object i with red pixel denoting the center oi.
Consider a pixel q inside object i, and the line segment connecting pixel q to center oi. If
object i is a star, any pixel p on this line segment must belong to object i. One star shape
is outlined in green. To enforce the star prior, it is sufficient to place the constraints only
between immediately adjacent pixel pairs along all lines emanating from the center oi [22].

Let Si be a set of all immediately adjacent ordered pixel pairs (p,q) along all discrete
lines emanating from center oi. We assume that pixel p is closer to the center than pixel q,
that is ‖oi− p‖ ≤ ‖oi−q‖. The star-shape prior f s,i(x) for object i is then given by

f s,i(x) = ∑
(p,q)∈S i

hi
pq(xp,xq), where hi

pq(xp,xq) =

{
K if xp 6= i ∧ xq = i,
0 otherwise (5)

The larger is K, the stricter is the star shape prior. In practice, for each object 0 < i≤ m, we
consider all discrete lines connecting oi and any pixel q on the image border.

2.2 Compact Prior

The compact shape prior in [4] assumes that an object can be partitioned into four quad-
rants around a given center. Within each quadrant the object contour is either monotoni-
cally decreasing or increasing in the direction allowed for the quadrant, see Fig. 1(b). Let
l ∈ {a,b,c,d} be a quadrant of object i with respect to oi. Consider quadrant l = a and denote
by S i

a the set of all adjacent ordered pixel pairs (p,q) in this quadrant. We use standard 4-
or 8-neighborhood system and assume that q is immediately above pixel p or to the left of
pixel p. The compact shape prior f s,i

l (x) for quadrant l = a penalizes switching from label i
to any other label in the direction from left to right and top to bottom:

f s,i
a (x) = ∑

(p,q)∈S i
a

hi
pq(xp,xq), where hi

pq(xp,xq) =

{
K if xq = i ∧ xp 6= i,
0 otherwise (6)
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Figure 2: Expansion vs. double expansion: (a) input image with scribbles and symmetry
axes, (b) expansion gets stuck in bad local minimum, (c) double expansion escapes it.

Similar pairwise potentials are defined for the other three quadrants with respect to their
allowed orientations, see Fig. 1(b). The compact shape prior for object i is given by

f s,i = ∑
l∈{a,b,c,d}

f s,i
l (x).

2.3 Symmetry Prior
The symmetry prior assumes that an object is symmetric with respect to a given axis. For
simplicity, here we assume that objects are vertically symmetric around their centers. Let S i

be a set of all pairs of symmetric pixels with respect of a given vertical axis of object i. The
symmetry prior for object i penalizes pairs of pixels that do not agree on label i, that is

f s,i(x) = ∑
(p,q)∈S i

hi
pq(xp,xq), where hi

pq(xp,xq) =

 K if xp 6= xq ∧ xp = i,
K if xp 6= xq ∧ xq = i,
0 otherwise

(7)

3 Optimization
Optimization with Expansion: First we review move-making algorithms [3]. Let x be
a labeling and let M(x) a set of labelings or moves that includes x. We say x̂ is a local
minimum w.r.t. M(x) if ∀x′ ∈M(x), f (x′)≥ f (x̂). In an α-expansion move, each pixel p can
stay with its current label xp or switch to α . That is, a move x′ is called an α-expansion
if x′p = xp whenever x′p 6= α . Let Mα(x) be the set of all α-expansions for a fixed α .
Expansion algorithm iterates over α ∈ L and finds an optimal α-expansion move for each α

till convergence to a local minimum w.r.t expansion moves ∪α Mα(x).
Starting from a finite energy solution, we show that expansion moves are submodular for

energy in Eq. 1. According to [2], it is enough to show that each pairwise potentials g(xp,xq)
in the energy satisfies g(β ,γ)+g(α,α)≤ g(α,γ)+g(β ,α),∀α,β ,γ ∈L. First, it holds that
g(α,α) = 0,∀L for all pairwise potentials in (1). Second, since current solution must have a
finite cost, we only need to show that the following inequality holds for g(β ,γ) 6= ∞:

g(β ,γ)≤ g(α,γ)+g(β ,α), ∀α,β ,γ ∈ L. (8)

Now, consider boundary regularization potentials in (3). Suppose vpq(β ,γ) 6= 0. Then,
vpq(β ,γ) = wpq and β 6= γ . Therefore, either α 6= γ or α 6= β or both. This implies, that
either vpq(α,γ)≥ wpq or vpq(β ,α)≥ wpq or both. Therefore (8) holds.

Consider star shape potentials in (5). If hpq(β ,γ) = K, then β 6= i and γ = i. If α = i then
hpq(β ,α) = K. If α 6= i, then hpq(α,γ) = K. Inequality (8) holds in both cases. Expansion
submodularity of compact (6) and symmetry (7) shape priors is shown in a similar way.

Citation
Citation
{Boykov, Veksler, and Zabih} 2001

Citation
Citation
{Boykov and Veksler} 2006



GORELICK ET AL.: DOUBLE EXPANSION FOR MULTILABEL SEGMENTATION 5

Figure 3: Comparison of double α-expansion with expansion for multilabel starshape prior.
Ten runs with random label order were performed. In contrast to expansion, double expan-
sion is robust to label order and always converges to a lower energy solution (top-right). For
expansion we show two randomly chosen solutions (bottom-right) at convergence, illustrat-
ing convergence to poor local minima.
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Optimization with Double Expansion: To motivate double expansion, we first analyze
drawbacks of standard expansion. Consider the image in Fig. 2 (a) with three symmetrical
objects sharing the same appearance model. User scribbles are in (a-left) and the symmetry
axes estimated from them are shown in (a-right). We show in (b) solutions for three consecu-
tive runs of expansion. Initially, everything is assigned to background except the foreground
scribbles. After expansion on label 2 (yellow), most of the foreground pixels are erroneously
assigned to label 2 due to appearance. Note, user scribbles are hard constrained and, there-
fore, preserve their label. Subsequent expansion on label 1 (light blue) is unable to grab any
pixels already assigned to the yellow object, because symmetry of the yellow object would
be violated. Further expansion on label 3 (red) runs into the same problem.

To fix the expansion problem, we need a move that in addition to expanding on a new
object label, can “erase" areas erroneously assigned to other object labels. For example the
blue object would be able to expand if the right part of the yellow object was simultaneously
“erased”. Erasing means replacing erroneous object pixels with the background label. This
move requires expanding on two labels at once: the new object label α and the background.
We develop such double expansion move.

Given label α ∈ L, in a double α-expansion move, each pixel chooses one of the three
options: keep its current label, switch to α or to 0. That is a move x′ is a double α-expansion
if x′p = xp whenever x′p 6∈ {a,0}. Let Mα

d (x) be the set of all double α-expansions for a fixed
α . Double expansion algorithm iterates over α ∈L and finds an optimal double α-expansion
move for each α until convergence to a local minimum w.r.t. ∪α Mα

d (x).
Consider Fig. 2 (c). Double expansion on label 2 results in an identical solution to stan-

dard expansion. Next, using the same label order for expansion, double expansion on label 1
(light-blue) grabs a big portion of the yellow object. This can be done, because background
label can fix the symmetry of the yellow object while expanding on the light-blue object.
Expansion on the label 3 (red) reduces the area erroneously assigned to the yellow object
even more. With double expansion, new objects can compete for the foreground pixels while
accounting for the shape prior of the label that is expanding and the shape prior of the other
labels. The result at convergence is in Fig. 5.

Double expansion is a more powerful move compared to expansion, that is Mα(x) ⊂
Mα

d (x). Starting from the same labeling, a single move of double α-expansion is guaranteed
to be at least as good as a single move of α-expansion. While we cannot guarantee lower
energy of a sequence of double expansion moves, we observe this behavior in practice.

Finding the optimal double α-expansion is formulated as minimization of ternary (3-
label) energy. Let x be the current labeling. Let L3 = {0,1,2}. We introduce a variable
yp ∈L3 for each p, and store them in y = (yp | p ∈ P). There is a one-to-one correspondence
e between all double α-expansion moves from x in Mα

d (x) and all labellings y. For each y,
let us denote the corresponding double α-expansion as e(y)1. Then

e(y)p =

 α if yp = 0
0 if yp = 1
xp if yp = 2

(9)

We now define ternary energy t(y). Let tp(yp) = up(e(y)p), for any (p,q) ∈ N , let
tr
pq(yp,yq) = vpq(e(y)p,e(y)q), and for any (p,q) ∈ S, let ts

pq(yp,yq) = hpq(e(y)p,e(y)q).
Energy t(y) is the sum of all unary and pairwise terms. It is straightforward to check
that t(y) = f (e(y)). Therefore y∗ that minimizes t(y) corresponds to an optimal double

1Note that e(y) also depends on x, which we omit for less cumbersome notation.
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α-expansion. In the supplementary material we show that t(y) is multilabel submodular and
thus can be optimized with the construction from [19]. Moreover, double expansion algo-
rithm has optimality guarantees for energies of the form f (x)= f a(x)+ f r(x). The following
theorem is proved in the supplementary materials.

Theorem 3.1 Let L̂= {1, ...,m}, i.e. the set of labels excluding the background label 0. Let
x̂ be a local minimum of the energy above with respect to double expansion moves and let x∗
be a globally optimal solution. Then f (x̂) ≤ |L̂∗| f (x∗), where |L̂∗| is the number of labels
from L̂ that appear in the optimal solution x∗.

4 Applications

Below we apply our double α-expansion algorithm to multilabel segmentation with compact
[4], star [22] and vertical symmetry shape prior for each label except the background. These
problems are formulated as a pairwise multilabel energy as we explained in Sec. 2.

Fig. 3-5 show examples of images with multiple foreground objects. In Fig. 3 we show
segmentation results with star shape prior applied to each foreground object, whereas Fig. 4-
5 show similar results with compactness and symmetry shape prior respectively. For each
image, the input scribbles were used to extract both, the appearance models for foreground
and background as well as the object centers/axes required for the shape prior.

All experiments were initialized with user scribbles and repeated ten times, randomizing
the order of labels for double expansion. For comparison, we repeated the same experiments
with the standard expansion [3]. All experiments were run till convergence, which always
occurred after one pass over the labels. Our double expansion optimization is very robust
to the order of expansion, converging to the same local minimum. In contrast, standard
expansion is sensitive to the order of expansion and in almost all cases converges to a local
minimum with a much higher energy. For each image we show the result obtained with our
double expansion and two randomly chosen results obtained with standard expansion.

5 Conclusions

We propose a new class of energies for simultaneous segmentation of multiple foreground
objects with a common shape prior and a new double expansion algorithm to optimize such
energies. Compared to expansion, the double expansion algorithm converges to lower energy
solutions, has optimality guarantees and is robust to order of expansion in practice. We ex-
periment with several types of shape prior and empirically demonstrate the advantage of the
double expansion. In the future we plan to incorporate more challenging, non-submodular
and higher order shape priors such as convexity and connectivity. Moreover, we plan to
extend the class of the energies to include a label cost term [7].
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Figure 4: Comparison of double α-expansion with expansion for multilabel shape compact-
ness. Ten runs with random label order were performed. In contrast to expansion, double
expansion is robust to label order and always converges to a lower energy solution (top-right).
For expansion we show two randomly chosen solutions (bottom-right) at convergence, illus-
trating convergence to poor local minima.
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Figure 5: Comparison of double α-expansion with expansion for multilabel symmetry prior.
Ten runs with random label order were performed. In contrast to expansion, double expan-
sion is robust to label order and always converges to a lower energy solution (top-right). For
expansion we show two randomly chosen solutions (bottom-right) at convergence, illustrat-
ing convergence to poor local minima.
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