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Abstract

Recent development in fully convolutional neural network enables efficient end-to-
end learning of semantic segmentation. Traditionally, the convolutional classifiers are
taught to learn the representative semantic features of labeled semantic objects. In this
work, we propose a reverse attention network (RAN) architecture that trains the net-
work to capture the opposite concept (i.e., what are not associated with a target class) as
well. The RAN is a three-branch network that performs the direct, reverse and reverse-
attention learning processes simultaneously. Extensive experiments are conducted to
show the effectiveness of the RAN in semantic segmentation. Being built upon the
DeepLabv2-LargeFOV, the RAN achieves the state-of-the-art mean IoU score (48.1%)
for the challenging PASCAL-Context dataset. Significant performance improvements
are also observed for the PASCAL-VOC, Person-Part, NYUDv2 and ADE20K datasets.

1 Introduction
Semantic segmentation is an important task for image understanding and object localization.
With the development of fully-convolutional neural network (FCN) [26], there has been
a significant advancement in the field using end-to-end trainable networks. The progress
in deep convolutional neural networks (CNNs) such as the VGGNet [32], Inception Net
[33], and Residual Net [17] pushes the semantic segmentation performance even higher via
comprehensive learning of high-level semantic features. Besides deeper networks, other
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Figure 1: An illustration of the proposed reversed attention network (RAN), where the lower
and upper branches learn features and predictions that are and are not associated with a tar-
get class, respectively. The mid-branch focuses on local regions with complicated spatial
patterns whose object responses are weaker and provide a mechanism to amplify the re-
sponse. The predictions of all three branches are fused to yield the final prediction for the
segmentation task.

ideas have been proposed to enhance the semantic segmentation performance. For exam-
ple, low-level features can be explored along with the high-level semantic features [2] for
performance improvement. Holistic image understanding can also be used to boost the per-
formance [18, 23, 39]. Furthermore, one can guide the network learning by generating
highlighted targets [8, 9, 11, 30, 34, 35]. Generally speaking, a CNN can learn the semantic
segmentation task more effectively under specific guidance.

In spite of these developments, all existing methods focus on the understanding of the
features and prediction of the target class. However, there is no mechanism to specifi-
cally teach the network to learn the difference between classes. The high-level semantic
features are sometimes shared across different classes (or between an object and its back-
ground) due to a certain level of visual similarity among classes in the training set. This
will yield a confusing results in regions that are located in the boundary of two objects (or
object/background) since the responses to both objects (or an object and its background) are
equally strong. Another problem is caused by the weaker responses of the target object due
to a complicated mixture of objects/background. It is desirable to develop a mechanism to
identify these regions and amplify the weaker responses to capture the target object. We are
not aware of any effective solution to address these two problems up to now. In this work,
we propose a new semantic segmentation architecture called the reverse attention network
(RAN) to achieve these two goals. A conceptual overview of the RAN system is shown in
Fig. 1.

The RAN uses two separate branches to learn features and generate predictions that are
and are not associated with a target class, respectively. To further highlight the knowledge
learnt from reverse-class, we design a reverse attention structure, which generates per-class
mask to amplify the reverse-class response in the confused region. The predictions of all
three branches are finally fused together to yield the final prediction for the segmentation
task. We build the RAN upon the state-of-the-art Deeplabv2-LargeFOV with the ResNet-
101 structure and conduct comprehensive experiments on many datasets, including PASCAL
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VOC, PASCAL Person Part, PASCAL Context, NYU-Depth2, and ADE20K MIT datasets.
Consistent and significant improvements across the datasets are observed. We implement the
proposed RAN in Caffe [20], and the trained network structure with models are available to
the public 1.

2 Related Work

A brief review on recent progresses in semantic segmentation is given in this section. Se-
mantic segmentation is a combination of the pixel-wisea localization task [29, 38] and the
high-level recognition task. Recent developments in deep CNNs [21, 32, 33] enable com-
prehensive learning of semantic features using a large amount of image data [10, 12, 25].
The FCN [26] allows effective end-to-end learning by converting fully-connected layers into
convolutional layers.

Performance improvements have been achieved by introducing several new ideas. One
is to integrate low- and high-level convolutional features in the network. This is motivated
by the observation that the pooling and the stride operations can offer a larger filed of view
(FOV) and extract semantic features with fewer convolutional layers, yet it decreases the res-
olution of the response maps and thus suffers from inaccurate localization. The combination
of segmentation results from multiple layers was proposed in [26, 31]. Fusion of multi-level
features before decision gives an even better performance as shown in [5, 23]. Another idea,
as presented in [4], is to adopt a dilation architecture to increase the resolution of response
maps while preserving large FOVs. In addition, both local- and long-range conditional ran-
dom fields can be used to refine segmentation details as done in [3, 40]. Recent advances
in the RefineNet [23] and the PSPNet [39] show that a holistic understanding of the whole
image [18] can boost the segmentation performance furthermore.

Another class of methods focuses on guiding the learning procedure with highlighted
knowledge. For example, a hard-case learning was adopted in [30] to guide a network to
focus on less confident cases. Besides, the spatial information can be explored to enhance
features by considering coherence with neighboring patterns [8, 9, 11]. Some other informa-
tion such as the object boundary can also be explored to guide the segmentation with more
accurate object shape prediction [3, 19].

All the above-mentioned methods strive to improve features and decision classifiers for
better segmentation performance. They attempt to capture generative object matching tem-
plates across training data. However, their classifiers simply look for the most likely patterns
with the guidance of the cross-entropy loss in the softmax-based output layer. This method-
ology overlooks characteristics of less common instances, and could be confused by similar
patterns of different classes. In this work, we would like to address this shortcoming by
letting the network learn what does not belong to the target class as well as better co-existing
background/object separation.

1https://drive.google.com/drive/folders/0By2w_A-aM8Rzbllnc3JCQjhHYnM?usp=
sharing
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Figure 2: Observations on FCN’s direct learning. The normalized feature response of the
last conv5 layer is presented along with the class-wise probability map for ’dog’ and ’cat’.

3 Proposed Reverse Attention Network (RAN)

3.1 Motivation

Our work is motivated by observations on FCN’s learning as given in Fig. 2, where an image
is fed into an FCN network. Convolutional layers of an FCN are usually represented as
two parts, the convolutional features network (usually conv1-conv5), and the class-oriented
convolutional layer (CONV) which relates the semantic features to pixel-wise classification
results. Without loss of generality, we use an image that contains a dog and a cat as illustrated
in Fig. 2 as an example in our discussion.

The segmentation result is shown in the lower-right corner of Fig. 2, where dog’s lower
body in the circled area is misclassified as part of a cat. To explain the phenomenon, we
show the heat maps (i.e. the corresponding filter responses) for the dog and the cat classes,
respectively. It turns out that both classifiers generate high responses in the circled area.
Classification errors can arise easily in these confusing areas where two or more classes
share similar spatial patterns.

To offer additional insights, we plot the normalized filter responses in the last CONV
layer for both classes in Fig. 2, where the normalized response is defined as the sum of all
responses of the same filter per unit area. For ease of visualization, we only show the filters
that have normalized responses higher than a threshold. The decision on a target class is
primarily contributed by the high response of a small number of filters while a large number
of filters are barely evoked in the decision. For examples, there are about 20 filters (out of
a total of 2048 filters) that have high responses to the dog or the cat classes. We can further
divide them into three groups - with a high response to both the dog and cat classes (in red),
with a high response to the dog class only (in purple) or the cat class (in dark brown) only.
On one hand, these filters, known as the Grand Mother Cell (GMC) filter [1, 13], capture
the most important semantic patterns of target objects (e.g., the cat face). On the other hand,
some filters have strong responses to multiple object classes so that they are less useful in
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Figure 3: The system diagram of the reverse attention network (RAN), where CONVorg and
CONVrev filters are used to learn features associated and not associated with a particular
class, respectively. The reverse object class knowledge is then highlighted by an attention
mask to generate the reverse attention of a class, which will then be subtracted from the
original prediction score as a correction.

discriminating the underlying object classes.
Apparently, the FCN is only trained by each class label yet without being trained to learn

the difference between confusing classes. If we can let a network learn that the confusing
area is not part of a cat explicitly, it is possible to obtain a network of higher performance.
As a result, this strategy, called the reverse attention learning, may contribute to better dis-
crimination of confusing classes and better understanding of co-existing background context
in the image.

3.2 Proposed RAN System

To improve the performance of the FCN, we propose a Reverse Attention Network (RAN)
whose system diagram is depicted in Fig. 3. After getting the feature map, the RAN consists
of three branches: the original branch (the lower path), the attention branch (the middle path)
and the reverse branch (the upper path). The reverse branch and the attention branch merge
to form the reverse attention response. Finally, decisions from the reverse attention response
is subtracted from the the prediction of original branch to derive the final decision scores in
semantic segmentation.

The FCN system diagram shown in Fig. 2 corresponds to the lower branch in Fig. 3 with
the “original branch" label. As described earlier, its CONV layers before the feature map
are used to learn object features and its CONVorg layers are used to help decision classifiers
to generate the class-wise probability map. Here, we use CONVorg layers to denote that
obtained from the original FCN through a straightforward direct learning process. For the
RAN system, we introduce two more branches - the reverse branch and the attention branch.
The need of these two branches will be explained below.

Reverse Branch. The upper one in Fig. 3 is the Reverse Branch. We train another
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CONVrev layer to learn the reverse object class explicitly, where the reverse object class is
the reversed ground truth for the object class of concern. In order to obtain the reversed
ground truth, we can set the corresponding class region to zero and that of the remaining
region to one, as illustrated in Fig. 1. The remaining region includes background as well as
other classes. However, this would result in specific reverse label for each object class.

There is an alternative way to implement the same idea. That is, we reverse the sign of
all class-wise response values before feeding them into the softmax-based classifiers. This
operation is indicated by the NEG block in the Reverse Branch. Such an implementation
allows the CONVrev layer to be trained using the same and original class-wise ground-truth
label.

Reverse Attention Branch. One simple way to combine results of the original and the
reverse branch is to directly subtract the reverse prediction from the original prediction (in
terms of object class probabilities). We can interpret this operation as finding the difference
between the predicted decision of the original FCN and the predicted decision due to reverse
learning. For example, the lower part of the dog gives strong responses to both the dog and
the cat in the original FCN. However, the same region will give a strong negative response
to the cat class but almost zero response to the dog class in the reverse learning branch.
Then, the combination of these two branches will reduce the response to the cat class while
preserving the response to the dog class.

However, directly applying element-wise subtraction does not necessarily result in better
performances. Sometimes the reverse prediction may not do as well as the original prediction
in the confident area. Therefore we propose a reverse attention structure to further highlight
the regions which are originally overlooked in the original prediction, including confusion
and background areas. The output of reverse attention structure generates a class-oriented
mask to amplify the reverse response map.

As shown in Fig. 3, the input to the reverse attention branch is the prediction result of
CONVorg. We flip the sign of the pixel value by the NEG block, feed the result to the sigmoid
function and, finally, filter the sigmoid output with an attention mask. The sigmoid function
is used to convert the response attention map to the range of [0,1]. Mathematically, the pixel
value in the reverse attention map Ira can be written as

Ira(i, j) = Sigmoid(−FCONVorg(i, j)), (1)

where (i, j) denotes the pixel location, and FCONVorg denotes the response map of CONVorg,
respectively. Note that the region with small or negative responses FCONVorg will be high-
lighted due to the cascade of the NEG and the sigmoid operations. In contrast, areas of
positive response (or confident scores) will be suppressed in the reverse attention branch.

After getting the reverse attention map, we combine it with the CONVrev response map
using the element-wise multiplication as shown in Fig. 3. The multiplied response score is
then subtracted from the original prediction, contributing to our final combined prediction.

Several variants of the RAN architecture have been experimented. The following nor-
malization strategy offers a faster convergence rate while providing similar segmentation
performance:

Ira(i, j) = Sigmoid(
1

Relu(FCONVorg(i, j))+0.125
−4), (2)

where FCONVorg is normalized to be within [−4,4], which results in a more uniformed dis-
tribution before being fed into the sigmoid function. Also, we clip all negative scores of
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Methods feature pixel acc. mean acc. mean IoU.
FCN-8s [26]

VGG16
65.9 46.5 35.1

BoxSup [7] - - 40.5
Context [24] 71.5 53.9 43.3

VeryDeep [34]
ResNet-101

72.9 54.8 44.5
DeepLabv2-ASPP [4] - - 45.7
RefineNet-101 [23] - - 47.1

Holistic [18] ResNet-152 73.5 56.6 45.8
RefineNet-152 [23] - - 47.3

Model A2, 2conv [36] Wider ResNet 75.0 58.1 48.1
DeepLabv2-LFOV (baseline) [4]

ResNet-101
- - 43.5

RAN-s (ours) 75.3 57.1 48.0
RAN-n (ours) 75.3 57.2 48.1

Table 1: Comparison of semantic image segmentation performance scores (%) on the 5,105
test images of the PASCAL Context dataset.

FCONVorg to zero by applying the Relu operation and control inverse scores to be within the
range of [-4, 4] using parameters 0.125 and −4. In the experiment section, we will compare
results of the reverse attention set-ups given in Equations (1) and (2). They are denoted by
RAN-simple (RAN-s) and RAN-normalized (RAN-n), respectively.

RAN Training. In order to train the proposed RAN, we back-propagate the cross-
entropy losses at the three branches simultaneously and adopt the softmax classifiers at the
three prediction outputs. All three losses are needed to ensure a balanced end-to-end learn-
ing process. The original prediction loss and the reverse prediction loss allow CONVorg and
CONVrev to learn the target classes and their reverse classes in parallel. Furthermore, the
loss of the combined prediction allows the network to learn the reverse attention. The pro-
posed RAN can be effectively trained based on the pre-trained FCN, which indicates that the
RAN is a further improvement of the FCN by adding more relevant guidance in the training
process.

4 Experiments
To show the effectiveness of the proposed RAN, we conduct experiments on five datasets.
They are the PASCAL Context [27], PASCAL Person-Part [6], PASCAL VOC [12], NYU-
Depth-v2 [28] and MIT ADE20K [41]. We implemented the RAN using the Caffe [20]
library and built it upon the available DeepLab-v2 repository [4]. We adopted the initial net-
work weights provided by the repository, which were pre-trained on the COCO dataset with
the ResNet-101. All the proposed reverse attention architecture are implemented with the
standard Caffe Layers, where we utilize the PowerLayer to flip, shift and scale the response,
and use the provided Sigmoid Layer to conduct sigmoid transformation.

We employ the "poly" learning rate policy with power = 0.9, and basic learning rate
equals 0.00025. Momentum and weight decay are set to 0.9 and 0.0001 respectively. We
adopted the DeepLab data augmentation scheme with random scaling factor of 0.5, 0.75, 1.0,
1.25, 1.5 and with mirroring for each training image. Following [4] we adopt the multi-scale
(MSC) input with max fusion in both training and testing. Although we did not apply the
atrous spatial pyramid pooling (ASPP) due to limited GPU memory, we do observe signif-
icant improvement in the mean intersection-over-union (mean IoU) score over the baseline
DeepLab-v2 LargeFOV and the ASPP set-up.
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Methods Dil=0 LargeFOV +Aug +MSC +CRF
DeepLabv2 (baseline) [4] 41.6 42.6 43.2 43.5 44.4

Dual-Branch RAN 42.8 43.9 44.4 45.2 46.0
RAN-s 44.4 45.6 46.2 47.2 48.0
RAN-n 44.5 45.6 46.3 47.3 48.1

Table 2: Ablation study of different RANs on the PASCAL-Context dataset to evaluate the
benefit of proposed RAN. We compare the results under different network set-up with em-
ploying dilated decision conv filters, data augmentation, the MSC design and the CRF post-
processing.

Image Baseline Ours Ground Truth
Figure 4: Qualitative results in the PASCAL-Context validation set with: the input image,
the DeepLabv2-LargeFOV baseline, our RAN-s result, and the ground truth.

PASCAL-Context. We first present results conducted on the challenging PASCAL-
Context dataset [27]. The dataset has 4,995 training images and 5,105 test images. There
are 59 labeled categories including foreground objects and background context scenes. We
compare the proposed RAN method with a group of state-of-the-art methods in Table 1,
where RAN-s and RAN-n use equations (1) and (2) in the reverse attention branch, respec-
tively. The mean IoU values of RAN-s and RAN-n have a significant improvement over that
of their baseline Deeplabv2-LargeFOV. Our RAN-s and RAN-n achieve the state-of-the-art
mean IoU scores (i.e., around 48.1%) that are comparable with those of the RefineNet [23]
and the Wider ResNet [36].

We compare the performance of dual-branch RAN (without reverse attention), RAN-
s, RAN-n and their baseline DeepLabv2 by conducting a set of ablation study in Table 2,
where a sequence of techniques is employed step by step. They include dilated classification,
data augmentation, MSC with max fusion and the fully connected conditional random field
(CRF). We see that the performance of RANs keeps improving and they always outperform
their baseline under all situations. The quantitative results are provided in Fig. 4. It shows
that the proposed reverse learning can correct some mistakes in the confusion area, and
results in more uniformed prediction for the target object.

PASCAL Person-Part. We also conducted experiments on the PASCAL Person-Part
dataset [6]. It includes labels of six body parts of persons (i.e., Head, Torso, Upper/Lower
Arms and Upper/Lower Legs). There are 1,716 training images and 1,817 validation images.
As observed in [4], the dilated decision classifier provides little performance improvement.
Thus, we also adopted the MSC structure with 3-by-3 decision filters without dialtion for
RANs. The mean IoU results of several benchmarking methods are shown in Table 3.The
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Image Baseline Ours Ground Truth
Figure 5: Qualitative results in the NYU-DepthV2 validation set with: the input image, the
DeepLabv2-LargeFOV baseline, our RAN-s result, and the ground truth.

results demonstrate that both RAN-s and RAN-n outperform the baseline DeepLabv2 and
achieves state-of-the-art performance in this fine-grained dataset.

Attention [5] HAZN [37] Graph LSTM [22] RefineNet [23] DeepLabv2 [4] RAN-s RAN-n
mean IoU 56.4 57.5 60.2 68.6 64.9 66.6 66.5

Table 3: Comparison of the mean IoU scores (%) of several benchmarking methods for the
PASCAL PERSON-Part dataset.

PASCAL VOC2012. Furthermore, we conducted experiments on the popular PASCAL
VOC2012 test set [12]. We adopted the augmented ground truth from [16] with a total of
12,051 training images and submitted our segmentation results to the evaluation website.
We find that for the VOC dataset, our DeepLab based network does not have significant im-
provement as the specifically designed networks such as [23, 39]. However we still observer
about 1.4% improvement over the baseline DeepLabv2-LargeFOV, which also outperforms
the DeepLabv2-ASPP.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person potted sheep sofa train tv mean
FCN-8s [26] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
Context [24] 94.1 40.7 84.1 67.8 75.9 93.4 84.3 88.4 42.5 86.4 64.7 85.4 89.0 85.8 86.0 67.5 90.2 63.8 80.9 73.0 78.0

VeryDeep [34] 91.9 48.1 93.4 69.3 75.5 94.2 87.5 92.8 36.7 86.9 65.2 89.1 90.2 86.5 87.2 64.6 90.1 59.7 85.5 72.7 79.1
DeepLabv2-LFOV [4] 93.0 41.6 91.0 65.3 74.5 94.2 88.8 91.7 37.2 87.9 64.6 89.7 91.8 86.7 85.8 62.6 88.6 60.1 86.6 75.4 79.1
DeepLabv2-ASPP [4] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

RAN-s1 92.7 44.7 91.9 68.2 79.3 95.4 91.2 93.3 42.8 87.8 66.9 89.1 93.2 89.5 88.4 61.6 89.8 62.6 87.8 77.8 80.5
RAN-n2 92.5 44.6 92.1 68.8 79.1 95.5 91.0 93.1 43.1 88.3 66.6 88.9 93.4 89.3 88.3 61.2 89.7 62.5 87.7 77.6 80.4
1http://host.robots.ox.ac.uk:8080/anonymous/QHUF8T.html, 2http://host.robots.ox.ac.uk:8080/anonymous/UWJO3S.html

Table 4: Comparison of the mean IoU scores (%) per object class of several methods for the
PASCAL VOC2012 test dataset.

NYUDv2. The NYUDv2 dataset [28] is an indoor scene dataset with 795 training images
and 654 test images. It has coalesced labels of 40 classes provided by [14]. The mean IoU
results of several benchmarking methods are shown in Table 5. We see that RAN-s and
RAN-n improve their baseline DeepLabv2-LargeFOV by a large margin (around 3%). Visual
comparison of segmentation results of two images are shown in Fig. 5.

MIT ADE20K. The MIT ADE20K dataset [41] was released recently. The dataset has
150 labeled classes for both objects and background scene parsing. There are about 20K
and 2K images in the training and validation sets, respectively. Although our baseline
DeepLabv2 does not perform well in global scene parsing as in [18, 39], we still observe
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Gupta et al. [15] FCN-32s [26] Context [24] Holistic [18] RefineNet [23] DeepLabv2-ASPP [4] DeepLabv2-LFOV [4] RAN-s RAN-n
feature VGG16 ResNet-152 ResNet-101

mean IoU 28.6 29.2 40.6 38.8 46.5 37.8 37.3 41.2 40.7

Table 5: Comparison of the mean IoU scores (%) of several benchmarking methods on the
NYU-Depth2 dataset.

about 2% improvement in the mean IoU score as shown in Table 6.

FCN-8s [41] DilatedNet [41] DilatedNet Cascade [41] Holistic [18] PSPNet [39] DeepLabv2-ASPP [4] DeepLabv2-LFOV [4] RAN-s RAN-n
feature VGG16 ResNet-101 ResNet-152 ResNet-101

mean IoU 29.39 32.31 34.9 37.93 43.51 34.0 33.1 35.2 35.3

Table 6: Comparison of the mean IoU scores (%) of several benchmarking methods on the
ADE20K dataset.

5 Conclusion
A new network, called the RAN, designed for reverse learning was proposed in this work.
The network explicitly learns what are and are not associated with a target class in its di-
rect and reverse branches, respectively. To further enhance the reverse learning effect, the
sigmoid activation function and an attention mask were introduced to build the reverse atten-
tion branch as the third one. The three branches were integrated in the RAN to generate final
results. The RAN provides significant performance improvement over its baseline network
and achieves the state-of-the-art semantic segmentation performance in several benchmark
datasets.
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