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Abstract

Face parsing is an important problem in computer vision that finds numerous appli-
cations including recognition and editing. Recently, deep convolutional neural networks
(CNNs) have been applied to image parsing and segmentation with the state-of-the-art
performance. In this paper, we propose a face parsing algorithm that combines hierar-
chical representations learned by a CNN, and accurate label propagations achieved by a
spatially variant recurrent neural network (RNN). The RNN-based propagation approach
enables efficient inference over a global space with the guidance of semantic edges gener-
ated by a local convolutional model. Since the convolutional architecture can be shallow
and the spatial RNN can have few parameters, the framework is much faster and more
light-weighted than the state-of-the-art CNNs for the same task. We apply the proposed
model to coarse-grained and fine-grained face parsing. For fine-grained face parsing, we
develop a two-stage approach by first identifying the main regions and then segmenting
the detail components, which achieves better performance in terms of accuracy and effi-
ciency. With a single GPU, the proposed algorithm parses face images accurately at 300
frames per second, which facilitates real-time applications.

1 Introduction
The recent years have witnessed significant progress in object segmentation and image pars-
ing using deep CNNs [4, 6, 8, 18, 22, 31]. With end-to-end nonlinear classifiers and hi-
erarchical features, CNN-based face parsing methods [16, 26] achieve the state-of-the-art
performance than approaches based on hand-crafted features [12]. The main issues with
existing CNN-based face parsing are the heavy computational load and large memory re-
quirement. Both issues can be alleviated by using shallow or light-weighted convolutional
structures, but at the expense of parsing accuracy.

In this work, we propose a face parsing algorithm in which a spatially variant recurrent
module is incorporated for global propagation of label information. A straightforward com-
bination of CNN and RNN is to take each activation in a CNN feature map as the input to
a hidden recurrent node in a two-dimensional (2D) spatial sequence and use the recurrent
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structure to learn the propagation weight matrix in an end-to-end fashion [1, 14]. These
models either utilize a spatial RNN [1], or a stacked long short-term memory (LSTM) [14].
In contrast, the proposed recurrent structure exploits the strength of both models in which
we apply a simple structure similar to a typical RNN but maintains the capability of spatially
variant propagation of an LSTM. Specifically, the proposed model uses a spatially variant
gate map to control the propagation strength over different locations in the label space. For
face parsing, this gate is naturally associated with the semantic boundary. A gate allows
propagation between pixels in a label-consistent region or stops it otherwise. We show that
this gate can be obtained via a relatively shallow CNN that focuses on learning low and
mid-level image features. The RNN module, controlled by the gate, can utilize rich re-
dundant information by propagating the predicted labels to their neighboring pixels in the
label-consistent region. Compared to a deep CNN face parser with similar performance, the
propagation layer requires a small amount of model parameters and significantly reduces the
computational cost. As a result, we construct a model that is hundreds of times faster and
smaller than deep CNN-based methods [16, 26] for face parsing without loss of accuracy.

We validate the proposed algorithm on both coarse-grained (parsing an image with ma-
jor regions including skin, hair and background) and fine-grained (parsing an image with
detailed facial components such as eyes, eyebrows, nose and mouth) face parsing. Both are
of critical importance for real-world applications in face processing, e.g., coarse-grained face
parsing for style transfer [2] and fine-grained face parsing for virtual makeup. Parsing only
the main classes is generally easier under the same settings due to the complexity of solu-
tions and more balanced distributions of training samples. We show that the proposed model
can parse all faces of an image in one shot, and significantly outperform the state-of-the-art
methods in terms of accuracy and speed.

One issue with applying a single network to fine-grained face parsing is the performance
on small facial components. This is due to the extremely unbalanced sample distributions
and image size of these regions. We design a two-stage method to parse these components
efficiently. We train the model for the main classes in the first stage and then focus on the
others with relatively simpler sub-networks. Specifically, the sub-networks in the second
stage take a cropped facial region as input. In contrast to a face component may occupy
a small amount of pixels with a whole image, the distributions of the pixels for a cropped
region are more balanced. We show that by dividing the second face parsing problem into
several sub-tasks, the overall network complexity is significantly reduced.

The contributions of this work are summarized as follows. First, a light-weighted net-
work is proposed for pixel-wise face parsing by combining a shallow CNN and a spatially
variant RNN, which significantly reduces the computational load of deep CNN. Second, We
show that when parsing a face image with multiple detailed components, dividing the prob-
lem into several sub-tasks is significantly more efficient than using one single model, with
even better accuracy. Experimental results on numerous datasets demonstrate the efficiency
and effectiveness of the proposed face parsing algorithm against the state-of-the-art methods.

2 Related Work
Face Parsing. Face parsing considered in this work assigns dense semantic labels to all pix-
els in an image. Typically, only one face image is assumed to be detected in an input frame.
Several approaches have been developed based on graphical models [12], exemplars [24]
and convolution networks [16, 20]. The face parsing method developed by Luo et al. [20]
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hierarchically combines several separately trained deep models. Liu et al. [16] develop a
unified model to generate complete labels of facial regions in one single pipeline. In [30]
Yamashita et al. propose a weight cost function to deal with unbalanced samples for pars-
ing small regions. Closest to this work is the multi-objective CNN [16] which introduces
additional supervision of semantic edges and achieves substantial improvements for coarse-
grained and fine-grained face parsing. However it is less effective for parsing detailed facial
components and computationally expensive. We show these issues can be largely resolved
by the proposed methods.

Recurrent Neural network. Recurrent networks [1, 5, 7, 9, 11] have been shown to be
effective for modeling long term dependencies in sequential data (e.g., speech). For image
data, we can apply one-dimensional (1D) RNN to multiple dimensions in row/column-wise
manner [10, 13, 28] or multi-dimensional RNN (MDRNN) [10] such that each neural node
can receive informations from multiple directions [1, 27] (as opposed to one direction in the
conventional RNN). In addition, there are other variants that leverage these two models, e.g.,
the grid LSTM [13, 14]. The proposed model belongs to the first category, which is easier
for parallelization.

The proposed recurrent model is closely related to two recent image parsing meth-
ods [3, 17] that utilize linear recurrent formulation to associate the adjacent pixels in either
the semantic label space or the low-level image space. In [3] Chen et al. propose the re-
current model with the concept of domain transform, where object edges learned on top of
the intermediate layers of a fully convolutional network (FCN [19]) are used to regularize
the transforms between adjacent pixels. Liu et al. [17] further extend the recurrent structure
to high-order recursive filters to model more variations in the low-level space. We com-
pare different RNN frameworks with respect to the spatially invariant [32] and variant (as
proposed in this work) recurrent modules. In addition, we show that the formulation with
recurrent propagation can substantially simplify the network structures with lower computa-
tional loads, which are not well exploited in the existing methods.

3 Proposed Algorithm
Most CNN-based face parsing algorithms [16, 30] apply deep networks with a large number
of parameters, which entail heavy computational loads. On the other hand, shallow models
can be executed efficiently but not able to model global data dependency. In this work, we
use a shallow CNN with a combination of spatially variant recurrent propagation module to
model image data effectively and efficiently.

Our model contains a shallow CNN and a spatial RNN, as shown in Figure 1. First,
the CNN takes a color image as its input and learns a coarse pixel-wise label score map
(Figure 1(b)). Second, the coarse label result is fed to a spatial recurrent unit for global
propagation. Specifically, the spatial propagation is controlled by a gate map (Figure 1(c)),
which is referred to as a recurrent gate in the rest of the paper. Each pixel in the map, for-
mulated as a scalar weight coefficient to the recurrent term, controls the connection between
two adjacent hidden nodes at the corresponding location. Since a gate map can be supervised
by the ground truth semantic boundaries from labeled annotations, it enables the recurrent
propagation to be discriminative between semantically consistent and inconsistent regions,
with respect to the specific input image.

We first briefly review conventional RNNs and describe how we extend it to the 2D
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Figure 1: Proposed parsing network architecture by combining a CNN and a spatial RNN. The CNN
generates a coarse label map (b) and a recurrent gate (c), which are fed into 4 RNNs with different
directions to generate a more accurate result (d). The network structure is shown where the notation
for Conv1 “5×5×16/1” means convolution layer with 5×5 kernel, 16 channels and stride 1. The face
image in (d) is further segmented with detailed labels in the second stage (see text and Figure 2).

space for image data, before introducing the recurrent gates. We then discuss how to train
the hybrid model in an end-to-end fashion.

3.1 Recurrent Neural Networks
The conventional RNN is developed to process 1D sequential data where each hidden node
represents a single character, frame, pixel and is connected to its adjacent neighbor. The
hidden node i, denoted as hi ∈H receives two inputs: an external input xi ∈X and its previous
activation hi−1 from one step back. The summation of these two inputs is then non-linearly
mapped via a function θ (·) as the activation of the current step:

hi = θ (ai) , ai = ωxxi +(ωhhi−1 +b) . (1)

In this formulation, xi and hi can have different dimensions, where the input transition matrix
ωx aligns xi to have the same dimension as hi. In addition, b is a bias or offset term to model
data points centered at a point other than the origin. For simplicity, we set xi and hi to have
the same dimension, and remove the ωx so that only the recurrent state transition matrix
needs to be learned.

To extend the 1D RNN in (1) to 2D images, we consider each row/column as 1D se-
quence, and then adopt an approach similar to the bidirectional recurrent neural network for
processing temporal sequences [10]. First, the 1D sequential RNN is processed respectively
along left-to-right, top-to-bottom, and their reverse ways. Taking the left-to-right direction
for a 2D feature/label map as an example, the 1D sequential RNN scans each row from left
to right. As a result, four hidden activation maps are generated.

The four hidden activation maps can be grouped either in parallel or cascade, as intro-
duced in [17]. The four maps share the same input X with the parallel method, while in
the cascade way, each RNN takes the output from a previous RNN as its input. We adopt
the parallel method and integrate the maps by selecting the optimal direction based on the
maximum response at each location. This is carried out by a node-wise max pooling opera-
tion that can effectively select the maximally responded direction as the desired information
to be propagated and reject noisy information from other directions. We note that the four-
directional RNNs with parallel integration can be executed simultaneously with multiple
GPUs for further acceleration as they are independent.
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The backward pass is also an extension of the back propagation through time (BPTT)
method used in RNNs [29]. Due to space limitation, we only present the derivative with
respect to ai:

δi = θ
′ (ai) · (ξi +ωhδi+1) , (2)

where ωh is a square weight matrix and all the others are 1D vectors. We denote ξ the influ-
ence from the output layer on top of the proposed spatial RNN, and the second term in (2)
the influence from the next hidden node. The derivatives are passed back in reverse order
against the feedforward process, with four distinct directions computed respectively [29].

3.2 Spatially Variant Recurrent Network
The fundamental problem of the RNN in (1) is that the hidden state transition matrix ωh
is spatially invariant. As such, it tends to propagate any pixel to its adjacent ones with a
group of fixed weights. However, the label space is spatially variant with respect to different
locations. The propagation between pixels that share the same label should be distinguished
from those between pixels with different labels on the semantic boundaries.

To this end, we propose a spatially variant recurrent network with gate maps gi ∈ G
as an additional input to the spatial RNN. Each gi is an additional coefficient that controls
the strength of connections between nodes to guide the recurrent propagations. Intuitively,
strong connections (e.g., gi is close to 1) should be enforced between nodes in the label-
consistent region. On the other hand, weak connections (e.g., gi is close to 0) should be
assigned to the nodes belonging to semantically different categories, so that they can be
successfully separated.

To reformulate the framework, we have two types of inputs to a RNN, i.e., an external
input X , and a spatially variant gate G. Given a hidden node hi, the spatially controllable
recurrent propagation is:

ai = xi +gi · (ωhhi−1 +b) . (3)

The propagation of the hidden activation at i−1 to i is controlled by dot product with gi. We
use the identity function θ (x) = x as the activation (also used by [3, 17]), since experimen-
tally it achieves better performance. To maintain the stability of the linearized formulation,
the absolute value of gi, and norm of ωh are both normalized to be within one during param-
eter update in order to prevent the hidden activation in H to be increased exponentially.

Similar to the sequential RNN, the BPTT algorithm is adopted to adjust X and G in the
spatially variant RNN. The derivatives with respect to ai and gi, denoted as δi and εi are:

δi = ξi +gi ·ωδi+1, εi = δi · (ωhhi+1 +b) . (4)

In addition, the derivative from RNN with respect to xi is equal to δi.

3.3 Hybrid Model of CNN and RNN
In the proposed framework, we apply a CNN that provides label representation X and spa-
tially variant gate representation G to the spatial RNN (see Figure 1). With the effective
propagation of RNN, the CNN can be relatively shallow as revealed in the experimental anal-
yses. Taking the three-class face parsing as an example, the main part of CNN is equipped
with only three convolutional layers, two max pooling (down-sampling) as well as deconvo-
lutional (upsampling) layers, as shown in Figure 1, and at most 32 channels for each layer.
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The proposed network is significantly smaller than most existing CNN-based face parsing
models based on 6 convolutional layers with 2 fully-connected layers [16], or 16 layers [26]
from VGG [23].

To connect with the spatial RNN, the feature maps with 16 channels generated from
the first deconvolutional layer (Deconv6 in Figure 1) are equally split into two components
(each with 8 channels), where one is for pixel-wise labels and the other is for the recurrent
gate, with equal width and height. They are then fed to four recurrent layers with different
directions as X and G respectively, where each pixel i in the hidden layers is processed by
combining xi and gi based on (3).

The hybrid network contains three different loss layers. At the top of the CNN, both
X and G are supervised with the softmax cross entropy loss. The labeling representations
are transferred by a convolutional layer to be directly supervised by the ground truth labels
(see Figure 1(b)). The gate representations are transferred by a 1× 1 convolutional layer
to have a single channel output, which is supervised by the boundary between different
categories (see Figure 1(c)). Finally, the output of RNN with 8 channels are transferred to 3
channels, upsampled to the original image scale, and supervised by the ground truth labels
(see Figure 1(d)). All the losses encourage the CNN to learn better label candidates as well
as guidances to the propagation. Specifically, the ground truth boundaries are obtained from
the annotated labels, by setting its boundary pixels to zeros and all the others to one. For
example, with a pixel i that is located on a boundary of two categories, the ground truth
value is set to zero, which can encourage the gi to “cut off” the connection between different
classes, and vise-versa.

4 Sub-networks for the Detailed Components
As discussed in Section 1 and revealed in the experiments, a single network does not per-
form well on small facial components. One problem is that some facial components amount
to small percentages of the entire dataset, e.g., the eye regions in Figure 1(a) occupy less
than 1% of the whole image. It is difficult to parse such components in one stage due to
unbalanced labeled data. The work of [16] applies a simple strategy by sampling with an
equal number of input patches. However, the performance on small facial components is not
satisfactory compared to categories with more pixels, e.g., skin. The other problem is the
limited resolution of facial components. With a larger input image, more details of the com-
ponents can be learned. However, it requires deeper or larger models to adapt to the enlarged
receptive fields. For a single model, it is a trade-off between effectiveness and efficiency.

We decompose a unified face segmentation network into a two-stage framework. In
practice, parsing major classes with either frontal, canonical face or multiple random faces
can be handled using the first stage only. For parsing 11 classes in the HELEN dataset, each
component can be labeled independently first and then combined with the major ones.

First Stage Face-Hair-Background Network. The first stage network classifies an image
into skin, hair and background regions using the combination of CNN and RNN, as intro-
duced in Section 3. Since there are only three labels with relatively equal distribution, we
do not need to balance the samples. As these classes do not contain detailed structures such
as facial components, the input resolution does not need to be high. Similar to [16], a face
image is detected and roughly aligned to the center using [25], with a resolution of 128×128
pixels. The result of the label has the same resolution as the input image.
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Figure 2: The second stage network operates on the cropped region, i.e., left and right eyes, nose,
and mouth, to parse accurate facial components. The final parsing result in (d) is the combination of
segments from two stages.

Second Stage Facial Component Networks. We locate the facial components for high
resolution faces image through 5 detected key points (eye centers, nose tip, and mouth cor-
ners) [25], and crop the patches accordingly. We train three simple and efficient networks
to segment eye and eyebrow, nose, and mouth regions, respectively. Figure 2(b) shows the
structure of eye/eyebrow network. It contains five convolution layers, two max-pooling lay-
ers, and two deconvolution layers, with an input size of 64×64. Similar network structures
are used for the nose as well as the mouth, and the input image size is 64×64 and 32×64,
respectively. Since each image is cropped around each facial component, it does not include
many pixels from the skin region. Therefore, the sample distribution is balanced for network
training. The final parsing result is composed of the accurate facial component segments in
the second stage and the coarse segments in the first stage. Since the segmentation task in
the second stage is easier, we do not apply the spatial RNN for efficiency reason.

5 Experimental Results
We carry out experiments on images containing one or multiple faces. For single face pars-
ing, we evaluate our method on the LFW-PL [12] and HELEN [24] datasets. In addition, we
develop a Multi-Face dataset to evaluate parsing numerous faces in one image. All experi-
ments are conducted on a Nvidia GeForce GTX TITAN X GPU.

5.1 Datasets and Settings
LFW-PL and HELEN Datasets. The LFW part label (LFW-PL) dataset contains 2,927
face images. Each face image is annotated as skin, hair or background using superpixels,
and roughly aligned to the center [12]. The HELEN dataset contains 2,330 face images
with manually labeled facial components including eyes, eyebrows, nose, lips, etc. For both
datasets, the most centered face in each image is annotated. We adopt the same setting of
data splits as [16] and resize each image and its corresponding label to 128× 128. For the
HELEN, dataset, the hair region is trained as one category in the first stage of our algorithm
but is not evaluated for fair comparisons with the existing method [16, 24].

Multi-Face Dataset. We collect a Multi-Face dataset where each image contains multiple
faces. It contains 9,645 images in unconstrained environments with pixel-wise labels includ-
ing skin, hair, and background. This dataset is divided into a training set of 9,045 images,
a test set of 200 images, and a validation set of 200 images. We rescale each image and
its corresponding label according to the length of the long side to maintain the aspect ratio.
Each one is zero padded to result in a 512×512 image where all faces appear clearly.
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(a) (b) (c) (d) (e) (f)
Figure 3: Face parsing results on the LFW-PL dataset. (a) input image. (b) ground-truth annotations.
(c) results from [16]. (d) results from CNN-S. (e) results from CNN with dense CRF. (f) results by
RNN-G. More results are presented in the supplementary material.

(a) (b) (c) (d) (e) (f)
Figure 4: Parsing results on the Multi-Face dataset. (a) input image. (b) results by the baseline
CNN. (c) results by the standard RNN. (d) results from RNN-G. (e) the ground truth. (f) a visualized
version of RNN-G. Our method is able to effectively and efficiently parse multiple faces in the cluttered
background. More results are presented in the supplementary material.

Network Implementation. Our network structures are described in Figure 1 and 2. We use
the first stage model (see Figure 1) to parse images in the LFW-PL and Multi-Face datasets,
and the facial skin and hair regions in the Helen dataset. In addition, we use the second stage
model (see Figure 2) to parse facial components of images in the HELEN dataset.

For fair comparison with the previous work, we align the input images according to [16]
in the HELEN dataset. The faces in the LFW-PL dataset do not need additional processing
since the released images are already coarsely aligned. On the other hand, we directly use
the 512× 512 images as the network inputs, and do not preprocess any face for the Multi-
Face dataset. We quantitatively evaluate and compare our model using per-pixel accuracy
and F-measure for each class in all experiments.

In the first stage, the boundaries in Figure 1(c) are balanced with the ratio of posi-
tive/negative number of pixels set to 1 : 5 such that a sufficient number of boundary samples
can be drawn. The training images augmented by random affine and mirror transformations
for increasing the variation of training samples. The network for the Multi-Face dataset has
two more 3×3×16 convolutional units (with max-pooling) and one more deconvolutional
layer to adapt to the input size. The results are evaluated with the resolution of 256× 256.
The boundary loss sampling and training image augmentation strategies are uniformly ap-
plied to all experiments. For the second stage model, we crop the facial components based
on the 5 facial key points from [25] for training and tests. We include at least additional 20%
height/width of the total foreground height/width in the cropped images during training and
maintain the aspect ratio.

5.2 Coarse-grained Face Parsing

Face parsing with 3 classes are carried out using the first stage model on the LFW-PL and
the Multi-Face datasets, respectively. We compare the proposed method, denoted as RNN-G
with: (a) shallow CNN part only (CNN-S). (b) shallow CNN with the RNN module replaced
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Table 1: Quantitative results on the LFW-PL dataset.“F” denotes f-score, “bg” denotes background,
“-” denotes not available.

(%) GLOC [12] MO [16] CNN-S CNN-deep CNN-CRF [4] RNN [32] RNN-G
F-skin - 93.93 90.47 91.63 91.25 93.72 97.55
F-hair - 80.70 76.09 78.30 75.21 81.21 83.43
F-bg - 97.10 95.42 95.95 99.58 97.15 94.37

Accuracy 94.95 95.09 92.44 93.27 92.59 94.85 95.46
Time (ms) 254 (CPU) ∼ 110 < 1 ∼ 2 ∼ 7 ∼ 2 ∼ 2

Table 2: Quantitative results on the Multi-Face dataset.
(%) CNN-deep CNN-CRF RNN Det+RNN-G single RNN-G

F-skin 75.56 77.84 73.33 81.02 87.36
F-hair 64.62 61.53 62.85 55.35 73.09

F-background 96.5 97.08 96.18 97.10 98.19
AC 93.39 94.5 92.78 94.42 96.35

(a) (b) (c) (d) (a) (b) (c) (d)
Figure 5: Face parsing results on the HELEN [24] dataset. (a) input image. (b) ground-truth annota-
tions. (c) results from [16]. (We roughly crop the results for better visual comparisons.) (d) our results
with 11-class pixel-wise parsing. More results are presented in the supplementary material.

by two 3×3 convolutional layers with 32 channels as a baseline network, denoted as CNN-
Deep. We increase the number of the output channels of Deconv6 (Figure 1) from 8 to 16 to
ensure that the shallow model can converge. (c) a combination of the shallow CNN and the
post processing with a dense CRF, denoted as CNN-CRF, which is commonly used in recent
semantic segmentation tasks [4]. (d) a standard RNN in (1) (similar to [32]) with the same
CNN. We note that both [4, 32] do note have experiments on shallow networks.

We show two more baseline methods [12, 16] evaluated on the LFW-PL dataset. Specifi-
cally, we adjust [16] by using only one-time feedforward with 2× bilinear upsampling layer
for fair comparisons in speed and accuracy. For the Multi-Face dataset, we use the models
to parse all faces in images without using any detector. This is computationally efficient and
useful for numerous applications without the need of instance-level information. We note
the label distribution of the Multi-Face dataset with respect to different categories are signif-
icantly unbalanced since the vast majority of pixels belong to the background regions. Thus,
we apply a data sampling strategy at each loss layer by maintaining the number of sampled
background pixels as 5 times of the total number of pixels for skin and hair regions.

Table 1 and 2 show the results with similar trends on these two datasets. Overall, the
shallow CNN, i.e., CNN-S, has limited performance. There is no significant improvement
gain by simply adding more layers (CNN-Deep) or adding an additional dense CRF module
(CNN-CRF). The standard RNN without the spatially variant gate performs better, but still
worse than the proposed method. With the spatially variant gate, the RNN-G model performs
significantly better than the baseline CNN-S, CNN-Deep and RNN models. The results
demonstrate the effectiveness of the proposed spatially variant RNN structure. The proposed
models operate at 500 fps for a 128× 128 single face image and 200 fps for a 512× 512
image with multiple faces.

Figure 3 and 4 show some parsing results on the two datasets. The proposed RNN-G
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Table 3: Quantitative evaluation results on the HELEN dataset. We denote the upper and lower lips
as “U-lip” and “L-lip”, and overall mouth part as “mouth”, respectively. See [16, 24] for more details.

Methods eyes brows nose in mouth U-lip L-lip mouth skin overall
Liu et al. [15] 77.0 64.0 84.3 60.1 65.0 61.8 74.2 88.6 73.8

Smith et al. [24] 78.5 72.2 92.2 71.3 65.1 70.0 85.7 88.2 80.4
Liu et al. [16] 76.8 71.3 90.9 80.8 62.3 69.4 84.1 91.0 84.7
Ours 1-stage 63.3 53.7 87.5 65.7 54.0 72.6 80.6 91.1 78.8
Ours 2-stage 86.8 77.0 93.0 79.2 74.3 81.7 89.1 92.1 88.6

model performs favorably against the CNN-S, CNN-CRF, standard RNN, and the method
using nonparametric prior and graph cut inference [16]. For Multi-Face dataset, we evalu-
ate the alternative method using a face detector [21] and the single face parser trained on
the LFW-PL dataset, which operates at 37 fps on average (depending on the number of de-
tected faces). The RNN-G model performs favorably in the cluttered background against all
alternative methods in terms of accuracy and efficiency.

5.3 Fine-grained Face Parsing

In the HELEN dataset, we evaluate the parsing results following the settings in [16], where
the second stage network is utilized to improve parsing results. Since the second stage takes
less than 1 ms, the overall run-time for parsing a face with 11 classes can operate at 300 fps
on a single GPU.

Table 3 and Figure 5 show the quantitative and qualitative parsing results. We first show
that by using a single stage, the unified model cannot handle detailed facial parts even with
the spatially variant RNN module. Our two-stage network performs favorably against the
state-of-the-art methods, and the one stage network model, on all categories. It is worth
noting that the overall F-measure achieved by the RNN-G model is 0.886, which amounts to
20% reduction in error rate from the state-of-the-art method [15]. These experimental results
demonstrate that the two-stage network structure with the spatially variant gate is effective
for accurate and efficient face parsing.

6 Conclusions

In this paper, we propose a pixel-level face parsing network by combining a shallow CNN
and a spatially variant RNN. The recurrent propagation infers globally over the entire image
with the guidance of a local model, which reduces the computational load of deep CNNs.
We develop a two-stage approach for accurate parsing of the detailed facial component. Ex-
perimental results on the HELEN [24], LFW-PL [12] and the proposed Multi-Face datasets
demonstrate the efficiency and effectiveness of the proposed face parsing algorithm against
the state-of-the-art methods.
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