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Abstract

We present a new method to detect carried objects and to segment them accurately af-
ter detection. The proposed method includes several contributions: first, a new superpixel-
based descriptor is proposed to identify carried object-like candidate regions using hu-
man shape modelling. Second, integrating spatio-temporal information of candidate re-
gions to detect carried objects. We exploit the consistency of recurring carried object
candidates viewed over time to detect the final carried object locations based on their
motion and location priors. Last, the detected carried object regions are accurately seg-
mented. Compared to existing methods, our approach is not only focusing on detecting
carried objects. It takes a step forward and accurately segment them. Our method to
carried object segmentation couples local appearance cues with location priors of the de-
tected carried objects to produce accurate segmentation. Experimental evaluation on two
datasets demonstrates that both our carried object detection and segmentation methods
significantly outperform competing algorithms.

1 Introduction

In recent years, surveillance cameras have become ubiquitous. The rapid growth of the video
surveillance market increased the need for automatically understanding information from
videos. In the domain of video analysis, automatically analysing human activities involving
carried objects attracts a lot of attention, and automatically detecting carried objects is at the
heart of this field.

Detecting objects carried by people is a difficult task due to the significant variation in
types of carried objects with regards to their shape, size and color. They also often blend
with the person’s clothing e.g. a handbag carried by a person can be easily confused with a
part of a person’s clothes.

There are three main schools of thought to detect carried object (CO), namely (i) analysing
the human shape to detect anomalies [1, 2, 3, 4], (ii) learning models for each type of carried
object [5, 6, 7] and (iii) analysing difference in human gait and motion patterns [1, 8, 9].
Learning a model for each object type is quite challenging due to the variety of object type
carried by a person. This approach is usually application specific. Analysing human shape is
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Figure 1: Illustration of our spatio-temporal CO detection and segmentation method.

also not straightforward because of different clothing styles and physical differences between
people. Most of the approaches in this area make the problem of detecting COs simplified by
considering only unoccluded large objects for which their relative distance to the center of a
person is not changing [2, 10]. The method called "ECE" by Ghadiri et al. [3] improved sig-
nificantly on this aspect by diminishing the number of assumptions for CO detection. They
detect COs by analysing person contours and explaining the anomalies in terms of COs in the
still video frame. Their work outperforms state-of-the-art methods without any assumption
on the protrusion and object size and shape. We build over this method by extending their
approach to the spatio-temporal domain in order to better discriminate of CO regions from
background and a person’s regions.

In this paper, we explore how we can detect and segment carried objects in a video
sequence. The main idea is to use both static and dynamic cues to detect persistent carried
object-like regions and then leverage both the appearance and the location of these regions
to segment COs. To implement this idea, we first introduce a superpixel- based descriptor to
extract Shape Context (SC) features from every superpixel in the over-segmented frame. We
then score each superpixel with regards to its similarity to a stored codebook of local human
shapes. The complement of the score value of each superpixel within the foreground is
considered as the likelihood of a superpixel to belong to a CO (Fig. 1(a)). To capture motion
and persistence of each superpixel candidate, we integrate information over all frames (Fig. 1
(output 1)). Intuitively, a candidate region that appears frequently throughout the video will
more likely be a CO. Conversely, one that only occasionally occurs is more likely to be
an un-interesting, person or background region. Using this spatial information of COs in
each frame, an appearance model is built and COs are segmented using Graph-Cuts on a
space-time Markov Random Field (MRF) (See Fig. 1).

Our main contribution is an automatic approach to segment carried objects on every
frame of a surveillance video. While the previous methods focused more on the detection of
COs, we take a step forward to segment carried objects on every frame of the video. Toward
this goal, important novel components of our method include (1) a new superpixel-based
descriptor to generate a carried object candidate regions, (2) integrating spatio-temporal in-
formation of candidate COs to detect carried objects. In terms of using temporal information,
our method differs from the work of [2, 10], since any assumption on spatial position of COs
relative to the body and the walking direction of people is not necessary, and (3) a space-time
graph segmentation that refines the detection results to segment COs. We applied our method
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on two publicity available datasets: PETS 2006 and i-Lids AVSS, and show state-of-the-arts
results compared to two recent methods. The source code and data of our method is available
athttps://sites.google.com/site/cosegmentation/.

2 Background

Since CO types can vary with regards to their shapes and sizes, the most successful ap-
proaches in this area focused on analysing human silhouettes followed by analysing their
motion patterns to differentiate between human regions and CO regions. Haritaoglu et al. [4]
and Javed et al. [11] detected COs by analysing the periodicity of non-symmetric regions in a
silhouette. Both works assumes that an unencumbered person silhouette is symmetric about
the body axis. Therefore, asymmetric regions with motion patterns that are different from
the limbs are considered as COs. Lee et al. [12] detected COs as outliers in the extracted
foreground using a dynamic shape model of human motion. Chayanurak et al. [1] proposed
a star skeleton model for a person silhouette and detected COs by analysing a time series of
motions of extracted skeleton limbs. Damen and Hogg [2] subtracted the best matching tem-
poral template exemplar from a generated temporal template of a tracked person. Remaining
regions from the subtraction which are static and fit in a spatial prior map are labeled as COs.
This previous work is further developed by Tzanidou et al. [13] by introducing a color tem-
poral template. Tavanai et al. [10] proposed a convex shape model and an elongated shape
model for COs. In their work, an estimation of a person region is obtained by the output of
a person detector and the search for convex/elongated regions is limited to the area of the
non-person regions.

The efficiency of the previous methods depends heavily on the precision of the fore-
ground extractor, the CO location and the assumption that COs are significantly protruding
from a person’s body. Dondera et al. [14] integrated different descriptors to segment moving
object into regions based on their color and motion. Then, they characterized each region by
a set of features, and used these features as input to a classifier. The weakness of this work
is a high similarity of CO shapes, and shapes of a person’s body parts negatively affect the
results. Ghadiri et al. [3] did not make any specific assumptions about the COs shapes and
their location. They proposed a method based on analysing a person contours to alleviate
the previously stated problems. In their work, an extracted edge map of a moving object
is compared to an ensemble of contour exemplars. Contours that are less probable to be a
member of the person class, are further analysed by assigning a region to each contour to
differentiate between a person’s region and a CO region.

3 Proposed Method

Our proposed method is inspired by [3] but extends it and outperforms it considerably since:
1) it can detect COs more precisely by integrating static and dynamic cues, and 2) it more
accurately segments COs by minimizing an energy function based on a learned dynamic
appearance model of detected regions and their location priors. The basic principles behind
the design of the algorithm are the following:

e Superpixel as a segmentation unit: Contours convey key information about object
shapes. Analysing local shape information of contours can benefit from superpixels
by gathering contour information in perceptually meaningful atomic regions.
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e Spatio-temporal consistency: Under the assumption that COs are not appearing just
in a single frame of a video, we exploit the consistency of recurring CO candidates
viewed over time to boost the detection results on each frame.

e Dynamic model of carried object and non-carried object: using initial detection results
over time, we can model CO and non-CO regions in terms of their appearance and their
location in the form of an energy function to segment carried objects.

Based on these principles, our algorithm consists of the three main stages; (1) initial CO
location estimation, (2) CO/non-CO labeling refinement, and (3) accurate CO segmentation.

3.1 [Initial carried object location estimation

Our approach starts by building a codebook of local features extracted from a training set.
The goal of this stage is to produce an initial estimate of CO regions by comparing local
features of a person possibly carrying an object against a codebook consisting of persons that
do not carry objects. We follow the same steps as ECE [3] to produce CO candidates, but we
exploit superpixel information to generate better CO candidates. To achieve this, similarly to
ECE [3], we first model walking/standing people from different viewpoints by constructing
a codebook of local features with their distance to the center of the person on the training
images. Unlike ECE which samples each training image using a regular grid to extract
Shape Context (SC) features, we over-segment the training images into superpixels and then
extract SC descriptors on the center of every superpixels. This provides more meaningful
local features than features extracted from a regular grid in case of deformable objects like a
person. Therefore, each codeword ¢; = (sc?,d;f, vj) records three types of information of a
superpixel s;, that is the shape context feature sc¢, the relative distance d; of the center of the
superpixel s; to the centroid of the person bounding box, and the discretized viewpoint of
the person vﬁ €{1,2,..,8}. We will now describe how we detect COs using this codebook.

In contrast to ECE that detects carried objects on a still frame, our method needs a short
video sequence (SVS) of approximately 2 walking cycles (7 frames) of a person trajectory
to detect COs. The temporal information of the short video sequence will be added to the
system in the detection phase. At this stage the SVS is used to generate CO candidates in
each frame independently.

Given a SVS, aregion of interest (ROI) is tracked by the tracker proposed by Jiaetal. [15]
and its foreground extracted by Papazoglou et al. [16] method. The ROI is a bounding box
that contains a person and potentially one or more COs. An estimation of the scale and
the center of the person in the ROI is obtained by a window-based detector [17] in the first
frame of the video, like in [3]. Then, the person scale and center in the subsequent frames
are calculated by the changes in the size of the tracking bounding box and its displacement
compared to the first frame.

Having this information, SC features are extracted from each superpixel s’ in the over-
segmented tracking bounding box (Fig. 2 (¢)). Each superpixel is then matched against the
codebook and the matching score for st is computed as follow:

P(sjld;) = exp(—||scj — sci||)P(d;|d}, )

1 (D
NG|

. 1 , .
with, P(d!|dS,%) = exp(—i(df» —d$) N (d! - d9))
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Figure 2: Overview of the initial carried object location estimation.

where df (d;f) is the relative distance of the s§ (s;) to the center of a person bounding box in
the test frame ¢ (codeword). X is a 2 x 2 diagonal covariance matrix with X;; < X3,. Among
the matching sc§, their most frequent person viewpoint v; in the codebook is chosen as the
observation viewpoint. Then, the final probability for each superpixel is obtained by :

P(st|v;) = mjaxexp(—”sc}/c - sc§||)P(df|d}/c,Z) (2)

where V¢ is a subset of the codebook with the specific viewpoint v;. The probability of each
superpixel reflects the likelihood of a superpixel to belong to a human region. Since we
consider only two classes (person or CO) within the foreground region, the complement of
the person probability map (Fig. 2(e)) is the CO probability map as shown in Figures 2(f)
and 1(a)).

In the CO probability map, uninformative superpixels are excluded. We define a super-
pixel as informative if its boundaries are sufficiently supported by edges. A measure of the
informativeness is obtained by calculating the number of overlaps between the boundary pix-
els of a superpixel and the edges in the edge map, divided by the perimeter of the superpixel.
Fig. 2 (c) shows an uninformative superpixel with red boundary (it is not considered in the
final decision, Fig. 2(f)).

3.2 Carried object/Non-carried object labeling refinement

Consider Fig. 3(b), the initial probability map for the COs based on one frame is not ac-
curate enough because of ambiguities in human hypotheses and unreliable foreground. A
superpixel can belong to a person or a shadow but still have a high value in the probability
map. Nevertheless, this probability map provides initial hypotheses for the CO detection
based on spatial and temporal information. Based on the assumption that carried objects are
appearing in more than K percent of the frames in a SVS, we propose a method to accumu-
late the initial CO probability over the entire short video sequence to build a voting map for
each superpixel at each frame.

Probability value V} of each superpixel st is updated by a two-step algorithm. In the first
step, starting from frame 7 + 1 toward the last frame ¢ 4 7 in SVS, each probability value
Vj? at frame ¢ is refined by propagation with the information of the probability values of
superpixels in previous frame ¢ — 1 and temporal connectivity using

LG sy vy
Lio(s )

r__ t
V=Vt 3)
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Figure 3: Carried object detection. (a) Input video (frame ¢ to ¢t 4 7). (b) CO candidate
regions (red bounding boxes show the spurious candidates). For clarity only highly probable
CO regions are shown in the figures (green segmented regions). (c¢) Detected COs delineated
by blue bounding boxes.

where ¢() is the percentage of pixels in superpixel sfl that connect to superpixel s’j by
temporal connections as defined by the optical flow displacement in [18] ;y/() is a quality
measure of optical flow transformation defined similarly to [16] by

w(s ) =exp(-2Y Y 7 7 ll) @)

t
PES;

where v?p) is the optical flow gradient in s} and A is a constant. In the next step, we redo
the propagation from the last frame toward the first frame by equation 3. The final proba-
bility value for each superpixel is the sum of the two steps over the number of frames. In
each frame, superpixels with a probability over K /100 x max(Vj? ) are chosen as belonging to
carried object (Fig. 3 (¢)).

3.3 Accurate carried object segmentation

Once the CO detections are obtained in the SVS of walking pedestrian, the segmentation
results are obtained by a graph-based method to get per-pixel CO segmentation results in the
entire video. To this end, we propagate the detection results in the SVS (frame ¢ to 7+ 7 ) to
the whole video from the first frame to the last frame ¢ 4 and also in the reverse order using
Equation 3. Then results are normalized and used for location priors for COs in each frame
Fig. 1 (b).

Having the location priors for COs in the entire video sequence, we formulate accurate
CO segmentation as a superpixel labeling problem with two labels (CO and non-CO). To
evaluate a labeling, we define an energy function similar to [16, 19, 20]. It is given by

EO=YU@+y Y, W@ )
i (i,j.t)eN

where [ is the labeling of a superpixel that can take values /! € 0,1 with 1 corresponding to a
CO and 0 corresponding to a non-CO. N consists of four spatially and two temporally con-
nected superpixels. The neighborhood term W' encourages spatial and temporal smoothness
and is a standard contrast-modulated Potts potential as defined in [16, 19, 21]. The data term
U' defines the cost of labeling superpixel s: with label /;:

Ui (l;) = —log(Ai(I},d) +wV{(1})) (6)
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AR3A 54

Figure 4: Comparison of the CO detection to our CO segmentation. (First column) original
image. (Second column) initial CO detection. (Third column) refined CO segmentation.

V! encourages CO labeling in the area obtained as CO detection (§ 3.2). The scalar w

weights the unary potential V’. The first term A’ is the color-induced cost, evaluating how
likely a superpixel is to be CO or non-CO according to the appearance model of a CO, which
is explained next.
Appearance model A’. Using CO location priors obtained by propagating detected CO
object to the entire video sequence (Fig. 1 (b)), we model CO and non-CO appearance by
estimating two Gaussian Mixture Models (GMM) in the RGB colorspace: (1) a GMM for
the superpixels belonging to the CO and (2) a GMM for the superpixels not belonging to
COs. We define A’ as the probability of a superpixel RGB color computed from each GMM.
A superpixel that has similar appearance in terms of its color to the CO (non-CO) will have
high cost if labeled as non-CO (CO) (see Fig. 1 (c)).

Fig. 4 shows the refined segmentation results in comparison to the results obtained by our
spatio-temporal detector in§ 3.2. As it can be seen from the second column in Fig. 4, some
parts of the clothes are initially detected as COs. Building an appearance model of COs
and non-COs regions combined with spatial information of COs in the form of an energy
function, leads to more precise segmentation by separating better clothes from COs.

4 Experimental Evaluation

Implementation Details. Superpixel segmentation is carried out with Simple Linear Iter-
ative Clustering (SLIC) [22] to independently segment each video frame into N = 1000
superpixels. SC features are extracted by the work of Wang et al. [23] and the size of
the SC feature is chosen based on the superpixel scale. All parameters are constant for all
experiments.
Experimental setup. We evaluate our method (named STCOD, for Spatio-Temporal Carried
Object Detection) on two datasets: PETS2006 [24] and i-Lids AVSS [25]. These datasets
were originally introduced to detect abandoned objects in a train station. For 75 individuals
in the PETS 2006, Damen and Hogg [2] provides video sequences of the tracked individuals
along with 83 CO ground-truth bounding box. Ghadiri et al. [3] provides ground-truth of
68 COs for 59 individuals in i-Lids AVSS in the first frame where a person appears in the
video. To complete this ground-truth, we manually created short video sequences for each
of the 59 individuals in i-Lids AVSS. For each tracked person in the video, CO ground-truths
bounding box are obtained by tracking the ground-truth of the COs in the first frame as
provided by [3].

To evaluate our method, we will compare it with Damen and Hogg [2] and ECE [3]
and report their results as originally stated in [3]. It should be noted that these methods,
including ours, all take a single decision per video sequence. However, ECE uses only the
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y | Prec. | Rec. | TP [ FP | FN |
STCOD 67% | 72% | 60 | 29 | 23
ECE [3] 57% | T1% | 59 | 44 | 24
Damen and Hogg [2] | 50% | 55% | 46 | 45 | 37

Table 1: Comparison of our method with ECE [3], Damen and Hogg [2] over PETS 2006
with a IoU = 0.15 overlap threshold.

y | Prec. | Rec. | TP | FP [ FN |
STCOD 73% | 69% | 47 | 17 | 21
ECE [3] 62% | 60% | 41 | 25 | 27
Damen and Hogg [2] | 52% | 47% | 32 | 29 | 36

Table 2: Comparison of our method with ECE [3], Damen and Hogg [2] over i-Lids AVSS
with a JoU = 0.15 overlap threshold.

first frame of the whole sequence, Damen and Hogg uses the whole video sequence and we
only use a short video sequence of about 2 sec to detect COs. We quantify the performance
with the percentage of CO ground-truth bounding boxes which are correctly localized as
in [2] (intersection-over-union (IoU)> 0.15). Since the method of Damen and Hogg [2] only
detects objects protruding from a person body, the threshold value 0.15 that they standardized
for CO detection is much lower than what is typically used in object detection (50%).

We also evaluate our refined segmentation results. CO ground-truth bounding boxes

are loosely delineating the COs. Therefore, they cannot efficiently be used to evaluate the
segmentation results. To quantify segmentation accurately, we manually segmented the first
frame of all tracked individuals in both datasets. For all 134 individuals, we evaluate the
performance with the number of wrongly label pixels over the all frames in the segmentation
datasets (Segmentation Error (SE) [18]). We also the evaluate accuracy of our segmentation
with the proportion of correctly labelled pixels [26].
Results. As shown in Tables 1 and 2, our method substantially improves over the ECE
and [2] on the precision. Our method significantly reduces the number of False Positive
(FP) because it uses spatio-temporal information as described in § 3.2. In comparison to
ECE, we also have a slight improvement in the number of True Positives (TP) because of a
better CO candidate regions provided by our new superpixel-based descriptor and also using
information of more than one frame. Fig. 5 depicts precision, recall and F1-score of our
algorithm as the threshold of overlap (IoU) is varied. Results on both datasets show that
our method achieves higher precision and recall as compared to other methods when the
threshold is increasing.

As Table 3 shows, our method considerably outperforms the segmentation results of ECE
method over the datasets as it tightly integrates appearance along with spatial consistency as
segmentation cues. Since, the method of Damen and Hogg cannot segment carried objects,
we excluded it from our comparison. Fig. 6 shows example frames from two datasets. Our
method accurately segments all COs in Fig. 6 except Fig. 6 (k,d), as it misses two COs in
both frames. The failure in the segmentation is primarily due to lack of spatial information
provided by our CO detector. On the other hand, as explained earlier in § 3.3, in some cases
that our CO detector fails to correctly label non-CO regions (i.e. provides inaccurate spatial
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Precision comparison on PETS2006

Recall comparison on PETS2006 F1 Score comparison on PETS2006
4 —— Proposed Method (STCOD)| 4 —— Proposed Method (STCOD) 4 ~—— Proposed Method (STCOD)|
A ECE ~amECE A ECE

07 ® Damen and Hogg ® Damen and Hogg 08 ® Domen and Hogg

Precision
°
Recall
Recall

[ 0.2 08 1 0 02 0.8 1 [ 0.2 08 1

o. 6 0. 6 0. 6
Overlap Threshold Overlap Threshold Overlap Threshold

Precision comparison on i-LIDS AVSS Recall comparison on i-LIDS AVSS F1 Score ison on i-LIDS AVSS

~—— Proposed Method (STCOD)| —— Proposed Method (STCOD), —— Proposed Method (STCOD)
e ECE = ECE = ECE

08 | =" bamen and Hogg 08 = Damen and Hogg 08 = Damen and Hogg
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Recall
Precision
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08 1 [ 0.2 0.8 1 0 0.2

0.4 0.6 0.4 0.6
Overlap Threshold Overlap Threshold

0.4 0.6
Overlap Threshold

Figure 5: Precision, Recall and F1-score plots as function of the overlap threshold.

] | Accuracy | Segmentation Errors (SE) |

STCOD 58% 1721
ECE [3] 49 % 2061

Table 3: Comparison of our segmentation method with the ECE method.

information), our segmentation method is able to minimize those wrongly labeled regions to
the regions which share less color similarity with non-CO regions (See Figures 6 (a,i) and
4).

5 Conclusion

In this paper, we make three contributions. First, we propose a new method to generate can-
didates for carried objects that exploit local cues obtained by the shape context descriptor
and global information of a human shape. Second, we integrate the set of carried object can-
didates in the short video sequence to the spatio-temporal domain. Our experimental eval-
uation demonstrates that our spatio-temporal detector diminishes the limitations of previous
methods, like ECE that often fail to discriminate clothes and shadows from COs. Last, we
segment carried objects by optimizing an energy function, which includes appearance cues
and location priors obtained by detected CO regions. Evaluation results on the segmentation
method demonstrate a significant improvement of the segmentation.
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(a) (b) (© (d

Figure 6: Comparison of our segmentation results to segmentation results of ECE [3]. First
row: first frame of several tracked individuals from i-Lids AVSS and PETS 2006. Second
row: segmentation results of ECE method. Third row: segmentation results of our method.
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