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Abstract

Hyperspectral imaging sensors are becoming increasingly popular in robotics appli-
cations such as agriculture and mining, and allow per-pixel thematic classification of
materials in a scene based on their unique spectral signatures. Recently, convolutional
neural networks have shown remarkable performance for classification tasks, but require
substantial amounts of labelled training data. This data must sufficiently cover the vari-
ability expected to be encountered in the environment. For hyperspectral data, one of the
main variations encountered outdoors is due to incident illumination, which can change
in spectral shape and intensity depending on the scene geometry. For example, regions
occluded from the sun have a lower intensity and their incident irradiance skewed to-
wards shorter wavelengths.

In this work, a data augmentation strategy based on relighting is used during training
of a hyperspectral convolutional neural network. It allows training to occur in the out-
door environment given only a small labelled region, which does not need to sufficiently
represent the geometric variability of the entire scene. This is important for applications
where obtaining large amounts of training data is labourious, hazardous or difficult, such
as labelling pixels within shadows. Experiments to evaluate the classification system are
carried out on three outdoor datasets captured from a field-based platform.

1 Introduction
Classification algorithms which use hyperspectral data form a critical component of out-
door robotic systems as the spectral signature of an object is its most defining characteristic.
While the majority of robotic platforms contain consumer grade cameras that have broad-
band spectral response curves, field based hyperspectral imagers are becoming increasingly
common in applications such as mineral mapping of mine faces [19], weed detection in agri-
culture [23], urban imaging [18] and skin detection in search and rescue [22]. The chemical
and structural composition of a material gives rise to unique spectral signatures, allowing
per-pixel thematic classification maps of the environment to be generated through the use of
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(a) Gualtar steps colour
composite.
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(b) Trained on sun and
shadow data.
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(c) Trained on sun only
data.
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(d) Trained on sun only
data with augmentation.

Figure 1: Improvement in CNN per-pixel classification of a hyperspectral image with a
shadow when using spectral relighting augmentation. Training labels were extracted from
either the entire image or only sunny areas. Results shown for the Gualtar steps dataset.

supervised classification algorithms. Classifiers require labelled data to train on, but acquir-
ing large scale ground truth labels is expensive in terms of computation and labelling effort.
In such scenarios, it is desirable to label small regions within the image and infer class labels
on the remaining pixels with the classifier.

Incorporating illumination variability into the training of supervised classifiers is an on-
going research question, with two main approaches being utilised. The first is by using large
amounts of training data to sufficiently represent the variability in the scene. However, this
is difficult in complex scenes where the incident illumination varies on a per-pixel basis. The
second method is to use pre-processing to convert the data to a form that is less dependant on
illumination. This is typically done by normalising the raw digital values against a material
of known reflectance such as a calibration board (flat-field correction). However, this is only
correct for the region in which the calibration board was placed [17].

Convolutional Neural Networks (CNNs) have been utilised to achieve state-of-the-art
performance for tasks such as classification [2, 9, 21] and robotic applications [16, 20]. Re-
cently, they have also been applied to hyperspectral data captured from airborne and satellite
based platforms [25].

In this work, CNN architectures are harnessed to generate an outdoor hyperspectral clas-
sification system from limited amounts of labelled training data. Illumination variability
is incorporated into the classifier through the use of a data augmentation strategy that uses
relighting. The advantages of the proposed approach are that it does not require multiple sen-
sor modalities or computational atmospheric models. It allows training data to be sampled
from within sunlit regions which are commonly easier to label, while classification can be
performed on both sunlit and shadowed regions (Figure 1). The contributions of this paper
are:

• an automatic, image based method for determining the incident illumination ratio,

• the incorporation of relighting into data augmentation,

• evaluation on outdoor hyperspectral datasets captured from a field-based platform.

Section 2 discusses related work and Section 3 describes the proposed method. Experi-
ments and results are presented in Section 4, and conclusions are drawn in Section 5.
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2 Previous Work

2.1 Illumination Invariance in Hyperspectral Classification

In the remote-sensing community, a well-known classifier is the Spectral Angle Mapper
(SAM), which computes the inverse cosine of the normalised dot product between a spectra
of interest and reference spectra [24]. SAM achieves some degree of illumination invariance
as the classifier is robust to multiplicative scalings of the spectra that are constant across
wavelength. This does not cater for the effect of shadows which are a wavelength depen-
dant multiplication of the spectra. An alternative approach is to transform the spectra into
an illumination invariant form prior to classification. From computer vision, the method of
[5] derives a transformation for RGB images to a 2D log-chromaticity space in which an
axis exists where changes in illumination due to intensity and shadow are suppressed. This
approach is extended to hyperspectral images in [4]. The problem with this approach is in
the assumptions that are made in order to derive the transformation, particularly the assump-
tion of Planckian illumination where the spectral power distribution of the incident light is
modelled by Wein’s approximation to Plank’s law. Atmospheric absorption features are not
accounted for by the approximation even though they have a large impact on the incident
light spectra. Finally, multi-modal approaches [7, 18] which use additional sensors such
as Light Detection and Ranging (LiDAR) and Global Positioning Systems (GPS) can form
geometry-based illumination models of the scene and compensate for the variations in light-
ing, however, the additional sensors required in these approaches are not always available.

2.2 CNNs for Hyperspectral Classification

In recent years, CNNs have been utilised for pixel-wise classification of hyperspectral im-
ages. However, many of the proposed CNNs convolve in the spatial domain and not the
spectral domain. The CNN in [12] convolves a small window over spatial patches extracted
from a dimensionality reduced hyperspectral cube. A similar approach is taken by [25],
but the spatial features are combined with spectral features learnt using a method based on
Local Discriminant Embedding. In [10] spatial patches are extracted from a non-reduced
hyperspectral cube, but there are still no convolutions occurring over the spectral channel.
In scenarios such as the ones presented in this paper where the amount of labelled training
is heavily constrained, it is very difficult to convolve in the spatial domain where the data
is limited, and so attention must be focussed on convolving in the information-rich spectral
domain. A very simple CNN was proposed by [8] which learnt features by convolving over
the spectral channel. This approach was shown to perform favourably against other types of
neural networks as well as SVMs. In all of these works all of the scenarios assume that the
training examples are sufficient for capturing the variability in the data, which is not always
possible in a robotics or autonomous application. Also, the datasets used for evaluation were
almost exclusively captured from satellite or airborne platforms.

3 A Robust Hyperspectral CNN

In this section, a summary of how to train the proposed network is given, followed by the
data augmentation strategy that makes the classifier robust to illumination variability. Critical
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to this, is the calculation of the ratio between the two primary outdoor illumination sources
(terrestrial sunlight and diffuse skylight), for which a novel, image based method is proposed.

The proposed hyperspectral CNN training strategy used to increase the robustness of
the classifier to illumination variability consists of multiple convolutional and non-linear
activation layers, followed by fully connected layers and the output softmax classifier. Each
pixel spectra is a data point and the network is trained by convolving filters over the entire
spectrum. There are no pooling layers so that the location of the spectral features along the
spectrum is preserved. The network is trained using stochastic gradient descent optimisation.
To achieve robustness to illumination variability, each batch of training data is augmented
with relighting and passed into the CNN. Convolution is only performed in the spectral
domain. This is because texture can be an unreliable feature, especially in the scenarios
dealt with in this work where the number of labels is limited.

3.1 Spectral Relighting Augmentation
Training supervised classification algorithms using small labelled regions fails to account
for illumination variability induced by the complex geometry of a scene. This paper pro-
poses the use of relighting [18] as a data augmentation strategy, in order to encompass the
illumination variations typically found in the outdoor environment. This allows training data
to be obtained from regions in the image that are either easy to access or easy to label, and
inference can then be performed on the remaining data. The following relighting derivations
focus on obtaining labels from sunlit regions, and classifying on shadowed data, though the
approach is easily transferable to the reverse scenario.

The outdoor illumination model [18] consists of a parallel, terrestrial sunlight source
Esunτ , and a hemispherical diffuse skylight source Esky. Assuming all materials in the scene
diffusely reflect light and that indirect illumination is negligible, the radiance L of a region i
as captured by a camera can be approximated as:

Li(λ ) =
ρi

π

[
ViEsun(λ )τ(λ )cosθi +ΓiEsky(λ )

]
, (1)

where ρi is the albedo of the material, Vi is a binary variable indicating whether there is
line-of-sight visibility between the region and the sun position, θi is the angle between the
surface normal Ni and the vector towards the sun, and Γi is the sky (or view) factor ranging
from 0 to 1 indicating the portion of the sky dome that is visible.

Relighting is the process of simulating the spectral appearance of a region under different
illumination and geometrical conditions that are not encompassed by the training set. For a
single sunlit datapoint at region i, the augmented version L j is calculated by multiplying the
training spectra Li by a wavelength dependent scaling factor:

L j(λ ) = Li(λ )

Vj
Esun(λ )τ(λ )

Esky(λ )
cosθ j +Γ j

Esun(λ )τ(λ )

Esky(λ )
cosθi +Γi

, (2)

where θi and Γi are the geometric parameters describing the sun angle and sky factor of
the original training datapoint, while Vj, θ j and Γ j are the parameters of the augmented
datapoint. When Vj is 0, relighting has the effect of simulating a shadowed region, while
setting it to 1 simulates the same datapoint with a different orientation.
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(a) Depiction of candidate pairs along horizontal and
vertical transects projected onto illumination and in-
variant axes for an example image.
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(b) Example showing the accu-
racy of the spectral augmentation
relighting for the Gualtar steps
dataset.

Figure 2: Extraction of the terrestrial sunlight-diffuse skylight ratio and its application in
augmenting spectra to appear in shadow.

In order to relight the data during training, several illumination and geometric parame-
ters are required. The first is the terrestrial sunlight-diffuse skylight ratio Esun(λ )τ(λ )

Esky(λ )
, which

describes the spectral and intensity relationship between the primary illumination sources in
the outdoor environment. The geometric parameters such as the sun angle and sky factors
are typically known when utilising multi-modal systems, where geo-registered point cloud
data can be used explicitly to estimate these values [18]. However, for image based methods
these parameters remain unknown, therefore a sampling procedure is used during training as
described in Section 3.2. During each batch of gradient descent optimisation of the network,
the geometric parameters θA, ΓA, Vj, θ j, Γ j, θi and Γi are sampled as shown in Algorithm 1.

Algorithm 1: Augmenting a batch of spectra for training the CNN. U and B represent
uniform and Bernoulli distributions respectively.

Input : batch of spectra data, number of irradiance ratio estimates M
Output: augmented batch of spectra dataAug

1 dataAug← data
2 for k = 1 to M do
3 sample θA ∼ U [0, π

2 ), ΓA ∼ U [0,1]
4 irradianceRatio← eq.(3)(θA, ΓA)
5 for l = 1 to size of batch do
6 Vj ∼ B(1, 1

2 ), θi ∼ U [0, π

2 ), θ j ∼ U [0, π

2 ], Γi ∼ U [0,1], Γ j ∼ U [0,1]
7 relitSpectra← eq.(2)(data; Vj,θi,θ j, Γi,Γ j,irradianceRatio)
8 dataAug← dataAug ∪ relitSpectra
9 end

10 end

3.2 Image Based Estimation of the Terrestrial Sunlight-Diffuse
Skylight Ratio

The terrestrial sunlight-diffuse skylight ratio is integral to the relighting process. Manual
methods involve the user selecting two adjacent points obtained from the same material
[18], or the use of computational atmospheric models, but these require the knowledge of
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parameters such as turbidity, gas concentration and water vapour [1]. Automatic methods
also exist [17], but these require extra sensor modalities (e.g. LiDAR). In this work, a novel
image based method for estimating the terrestrial sunlight-diffuse skylight ratio is proposed.
It consists of a three stage process of candidate generation, refinement and smoothing.

If two pixels (A,A′) of the same material are selected from a sunlit and shadowed region
respectively, both of which have the same orientation, the terrestrial sunlight-diffuse skylight
ratio can be approximated by equating ρA and ρA′ from (1):

Esun(λ )τ(λ )

Esky(λ )
=

ΓA

cosθA

[
LA(λ )

LA′(λ )
−1

]
∝

LA(λ )

LA′(λ )
−1.

(3)

Since the scene geometry is unknown due to the use of only image data, selection of pairs of
points in sunlit and shadowed regions from the same material can be used to obtain candidate
terrestrial sunlight-diffuse skylight ratios that will be a scalar multiple of the underlying ratio.

To automatically select pairs of points in and out of the shadowed regions, a pseudo RGB
image is formed from three bands. Hypothetically these can be any bands, however they
should be chosen to maximise the discriminability of the classes. If in the visible domain,
these bands can be 450nm, 550nm and 600nm (peak wavelengths of an RGB camera), and if
in the Short-Wave Infrared (SWIR) domain the bands can be 1060nm, 1250nm and 1630nm
(the middle of sections of the spectrum outside the destructive water bands). Next, the three
channel image is converted to 2D log-chromaticity space where the illumination invariant
direction is found through entropy minimization [3, 6]. The 1D projection of the image onto
this axis is invariant to changes in the illumination. The orthogonal axis is found (deemed the
illumination axis) which captures large changes in illumination resulting from either shadow
or spectrally discrete class boundaries.

Candidate pairs of adjacent points taken from horizontal and vertical transects of the
pseudo RGB image are projected onto the invariant and illumination axis:

Iinvi = eXiw, Iilli = eXiw⊥ , (4)

where Xi is the log-chromaticity of point i, the vector w is the direction of the invariant axis
and Ii is the exponential of the points location on either the invariant or illumination axis.
If there is a large difference between a pair along the illumination axis (corresponding to
either a shadow or material class boundary) but a small difference between the pair along
the invariant axis (ruling out the class boundary), then the pair is considered to be valid
(Figure 2(a)) and the ratio between the spectra is calculated. For a candidate pair of points,
the validity of them constituting a sun-shadow pair can be determined using:

|Iinv1 − Iinv2 |
Iinv2

< µ,
|Iill1 − Iill2 |

min(Iill1 , Iill2)
> ξ , (5)

where reasonable values for µ and ξ were determined empirically as 0.3 and 1.2 respectively.
The average ratio is subsequently taken over all valid candidate pairs before smoothing with
an Savitzky-Golay filter [11] and used as an estimate for LA(λ )

LA′ (λ )
in (3).
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(a) False colour image of Great Hall building with example of
limited sunlit regions where labels are extracted.
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(c) With augmentation.

Figure 3: CNN classification of the Great Hall using 1000 training examples per class were
used, drawn from the limited regions (red squares).

4 Experimental Method and Results

4.1 Datasets

Three outdoor field-based datasets captured from hyperspectral sensors are used to evaluate
the proposed relighting augmentation. The first dataset is a SWIR scan of the Great Hall at
the University of Sydney (Figure 3(a)) [18]. The image consists of 293× 1306 pixels with
152 spectral channels ranging from 1009−2482nm. The scene consists of an urban environ-
ment, with material classes including roof, building, grass, path, tree and sky. Large shadows
exist, predominantly over the building and roof regions. The second dataset is a Visible and
Near-Infrared (VNIR) scan of a mine face [14], exemplifying a natural, unstructured envi-
ronment. It contains two types of ore; Martite and Shale and a geologist has identified a
rough boundary separating the two geological regions (Figures 4(a) and 4(b)). Two scans
are captured from the same position at different times of the day, one at 11:30 and one at
13:30, with shadows emerging in the latter image. Each image is 289× 1443 pixels, with
220 spectral channels corresponding to wavelengths in the range of 401-970nm. The third
dataset consists of a Visible (VIS) range image of a semi urban scene in Gualtar [15]. The
image is 1024×1344 pixels, with 33 channels in the range 400-720nm and classes of brick,
grass and wall (Figure 1(a)). Half of the image is in shadow.

4.2 CNN architecture

The overall CNN architecture is the same for all datasets. Empirically, it was determined that
the best architecture contained two convolutional and two fully connected layers, with the
first convolutional learning 30 filters and always having a filter size of 1×1×30×1 (each
input spectra was of shape 1×1×D×1 where D is the number of spectral channels). Since
the Gualtar steps data only has 33 channels, the filter size used is 1×1×10×1. The second
convolutional layer has ten filters each with a size of 1×1×10×30. Fully connected layers
consist of 20 units each. The networks are optimised using 200 epochs of stochastic gradient
descent with a learning rate of 10−5, momentum of 0.9 and batch size of 50.
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(a) Mine face image captured at 11:30. (b) Mine face image captured at 13:30.
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(d) No augmentation 13:30.
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(f) With augmentation 13:30.

Figure 4: CNN classification of the mine face using 100 training examples per class drawn
from the limited regions (red squares). The same network was used to classify the image at
both times of the day. The blue line is a rough class boundary identified by geologists.

4.3 Results

To assess the performance of the CNN with the spectral relighting augmentation for each of
the experiments, the F1 score is used. To evaluate the classifiers, test set sizes of roughly
225000, 90000 and 230000 pixels spectra are chosen for the Great Hall, mine face and
Gualtar steps datasets respectively. The number of training examples is varied logarithmi-
cally between 100 and 1000 examples per class (5 increments: 100, 178, 316, 562, 1000).
Ten candidate terrestrial sunlight-diffuse skylight ratios are generated for the augmentation
such that each pixel spectra is relit ten times, with roughly half of those relightings being to
shadow and half remaining sunlit but with different orientations. This expands the training
dataset to 11 times its original size. The validation dataset consists of 50 examples per class.
The mean and standard deviation for five randomly initialised networks is recorded.

Separate CNNs are trained on two sets of labelled training data. One set (referred to as
‘comprehensive’) is collected from both sunlit and shaded regions of the image, and also has
large spatial coverage such that it best represents the variation in scene geometry and incident
illumination. The second labelled training dataset (referred to as ‘limited’) is only collected
in sunlit regions and the spatial coverage is small - limited to a patch (red squares in Fig-
ures 3(a) and 4(b)), such that there is a very poor representation of the scene geometry and
incident illumination. Networks are trained on the limited dataset using the proposed data
augmentation. Their performance is compared to networks that are trained on the limited and
comprehensive datasets without any augmentation. The results of the networks trained on the
comprehensive training data can be seen as roughly an upper bound for the results of train-
ing on the limited datasets. The performance of the CNN trained on the limited data, both
augmented and not augmented, is compared against other classification approaches includ-
ing SAM [24], an SVM [13], and a CNN trained on spectra projected into an illumination
invariant space using log-chromaticity [4]. For the mine face dataset, networks are trained
on the 13:30 image only.

The results (Figures 1, 3, 4 and 5) from all three datasets showed that there was a clear
advantage to augmenting the labelled data used to train the CNN. The CNN achieved better

Citation
Citation
{Yuhas, Goetz, and Boardman} 1992

Citation
Citation
{Melgani and Bruzzone} 2004

Citation
Citation
{Drew and Salekdeh} 2011



WINDRIM ET AL.: HYPERSPECTRAL CNN CLASSIFICATION 9

10 2 10 3

number of training examples per class

0

20

40

60

80

100
m

ea
n 

F
1 

cl
as

si
fic

at
io

n 
sc

or
e 

(%
)

SAM[24] (limited)
SVM[13] (limited)
CNN (limited)
CNN+Drew[4] (limited)
augmented CNN (limited)
CNN (comprehensive)

(a) Great Hall.
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(b) Mine face.
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Figure 5: Spectral Relighting Augmentation Results: Results showing the benefit of training
a CNN with the proposed data augmentation approach. The performance of the augmented
CNN is compared with other approaches. ’Limited’ indicates that a classifier was trained
on localised, well-lit regions of the image, and ’comprehensive’ indicates that a classifier
was trained on the whole image (both well-lit and shadowed regions, see Figures 3(a) and
4(b)). The number of training samples is varied logarithmically between 100 and 1000, and
the mean and standard deviation of the F1 classification score is reported for three different
hyperspectral datasets.
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Figure 6: Spectral Relighting Augmentation Results: F1 classification score of Great Hall
classes in shadow and sunlight, for several different methods, trained on limited regions and
the whole image (comprehensive), for training set size 100 samples per class.

classification scores with augmentation in comparison to not using augmentation for all train-
ing set sizes and all datasets, with most of the gap between training the CNN with limited and
comprehensive training sets being bridged. The results of training with the augmented data
was also superior to the CNN trained on data that was projected into an illumination invari-
ant space [4]. The SAM and SVM classifiers performed comparably on the mine face and
Gualtar steps datasets, which had quite discriminative classes, but performed significantly
worse on the Great Hall dataset which had more spectrally similar classes, suggesting that
their use may be limited to scenarios with highly distinguishable classes. The performance
of the augmented and non-augmented CNN as the amount of training samples was increased
was relatively consistent. This is because the training examples were being sampled from
such a small region of the image such that increasing them allowed the CNN to capture very
little extra variability. Since the augmented CNN simulated the missing variability there was
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Figure 7: Spectral Relighting Augmentation Results: Evaluating the benefit of using spec-
tral relighting augmentation for classifiers other than CNNs. SVM and SAM classifiers were
trained on limited, well-illuminated regions of the Great Hall dataset with and without aug-
mentation. The number of training samples is varied logarithmically between 100 and 1000,
and the mean and standard deviation of the F1 classification score is reported.

little dependence of the classifier’s performance on the number of training examples.
Figure 6 shows the improvement that augmented training data provided specifically in

the shadowed and sunlit areas for two of the Great Hall classes. In both sun and shadow,
most of the gap between training the CNN with limited and comprehensive data was bridged
by the augmentation, suggesting that it allowed the limited amount of training data to capture
the variability as if the labels were collected from all over the image - covering areas with
different geometry, incident illumination and occlusions. Also, in contrast to the SVM,
which performed well on the sunlit regions for these two classes but poorly on the shadowed
regions, the augmented CNNs performance in the shadow approached its performance in the
sun. The CNN trained on the illumination invariant projection of the data [4] had similar
performance in sunlit and shadowed regions but was significantly worse than the augmented
CNN, whose performance in the shadow surpassed all other methods trained on limited data.

Figure 7 shows that the proposed spectral relighting augmentation is agnostic of the
classifier. The performance of SAM and SVM classifiers are also improved upon by the data
augmentation when there is limited training data available.

Despite the diffuse assumption made in (1), the results show that this is not a particularly
strong constraint on the data, with each dataset possessing non-Lambertian materials. Fig-
ure 3(c) shows that there are still sporadic misclassifications in areas of shadow which are
potentially due to the increased prevalence of indirect illumination which was not incorpo-
rated into the model for simplicity.

5 Conclusion

This work has proposed a method for training a CNN to be robust to several factors of
variation in outdoor hyperspectral data with only a limited amount of training data. This
was done through spectral relighting augmentation using an approximation of the terrestrial
sunlight-diffuse skylight ratio found from the scene. Future work involves the incorporation
of spatial information and training the CNN to be robust to illumination over different days.
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