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Abstract

Using a monocular camera for early collision detection in cluttered scenes to elude
fast incoming objects is a desirable but challenging functionality for mobile robots, such
as small drones. We present a novel moving object detection and avoidance algorithm
for an uncalibrated camera that uses only the optical flow to predict collisions. First,
we estimate the optical flow and compensate the global camera motion. Then we detect
incoming objects while removing the noise caused by dynamic textures, nearby terrain
and lens distortion by means of an adaptively learnt background-motion model. Next,
we estimate the time to contact, namely the expected time for an incoming object to
cross the infinite plane defined by the extension of the image plane. Finally, we combine
the time to contact and the compensated motion in a Bayesian framework to identify an
object-free region the robot can move towards to avoid the collision. We demonstrate and
evaluate the proposed algorithm using footage of flying robots that observe fast incoming
objects such as birds, balls and other drones.

1 Introduction

A quick detection of fast incoming objects that become visible only a few seconds before
impact can help a flying robot avoid a collision. While collision avoidance can use data
from 3D laser scanners, sonars or stereo cameras [15], monocular cameras are preferable
because of their small weight, power efficiency and ease of deployment. However, a single
uncalibrated camera cannot in general make accurate predictions about the time to collision
(or time to contact, TTC) with incoming objects of an unknown size.

Colliding objects can be detected using feature points to measure the expansion of image
patches [13] or to restrict the computation of the TTC to certain locations [2, 14]. However,
feature point based methods [13, 14] or generic object detectors (e.g. EdgeBox [22]) are in-
adequate with textureless objects. Dense depth maps generated by monocular cameras while
hovering [3] or collision-free trajectories built in the disparity space with stereo cameras [11]
can also be used. Alternatively, stereo block-matching can build a disparity map for a lim-
ited range of distances to localise obstacles [5]. Recently, Watanabe et al. [19] proposed a
method to compute the TTC from image intensity values when a light source illuminates the
colliding surface.
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Figure 1: Block diagram of the proposed object detection and avoidance algorithm.

The optical flow can be used to detect incoming objects via the TTC [7]. However,
the optical flow may generate several false positives due to the regularisation noise and the
aperture problem. In fact, the optical flow is used alone for obstacle avoidance only in
virtual [2] or controlled scenarios [17]. In real scenarios, the optical flow is used along with
an ultrasonic sensor for altitude stabilisation [8], with inertial sensors for indoor navigation
in textured environments [23] and with a feature point detector for obstacle avoidance [1].
While methods exist that tackle the problem of early collision detection from (fixed-wing)
unmanned aerial vehicles, these methods are designed to work at high altitudes where clutter
is generated by clouds and therefore morphological operators suffice as post-processing [12].
At low altitudes, which are common for micro aerial vehicles, the problem is considerably
more challenging as the surrounding environment is often cluttered.

In this paper, we propose a method to address the problem of detecting fast incoming
objects when they become visible from a moving camera shortly before an impact (Fig. 1).
To detect these objects we use only the optical flow computed from an uncalibrated camera
without using any feature points. We calculate the motion induced by the camera to infer
the position of the objects on the image plane and the TTC to estimate their proximity. To
reduce the influence of camera motion in object detection we adaptively learn the background
motion. The proposed adaptation strategy allows the background motion model to cope with
varying camera velocities and with different scene depths. Finally, we merge the optical flow
information and use a Bayesian collision avoidance method to locate object-free regions,
whose centre is represented as a safe point. The robot can then use the position of the safe
point and avoid the incoming object(s).

2 Time to contact
Let a flying robot (e.g. a small drone) capture with its forward facing camera a video whose
frame at instant t is I(t). I(t) is composed of N pixels with positions Φ = {(xi,yi)}N

i=1.
We first estimate the dense optical flow, O(t), between the current, I(t), and the previous

frame, I(t−1) [9]:
O(t) = {(xi,yi,ui(t),vi(t))}N

i=1, (1)

where (xi,yi) is the position and (ui(t),vi(t)) are the velocity components of the motion
vector associated to pixel i. For simplicity we will omit t in the remainder of the paper.

Distant objects generally produce motion vectors whose magnitude is smaller than that of
motion vectors generated by nearby objects. We therefore calculate the time to contact (TTC)
to estimate the number of frames prior to the potential contact with an observed object [6].
Let T̂ = {τ̂i}N

i=1 be the set of TTC values, τ̂i, associated to each pixel i and calculated as

τ̂i =
||(xi− x̃,yi− ỹ)||2
||(ui,vi)||2

, (2)
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Figure 2: Example of time to contact (TTC) and compensated motion for an incoming object.
(a) A small drone (orange box) is about to collide with the drone recording the egocentric
video. (b) The focus of expansion F (magenta point) generates small values of TTC (τ j)
that may generate false incoming-object detections. (c) Using the compensated motion (m j)
produces instead a more accurate object detection.

where || · ||2 is the `-2 norm and F = (x̃, ỹ) is the focus of expansion (FOE) [16]. The
FOE defines the translational direction of the flying robot as the point of divergence of the
optical flow on the image plane. The FOE, which can be calculated using O via least squares
[16, 18], enables us to compute the TTC regardless of the direction of motion. Because
motion vectors near the FOE may generate a small value for the numerator of Eq. 2, the
detection of incoming objects around F is unreliable as they may appear to be still [11].

In principle, one could segment regions with small (decreasing) TTC values to detect
incoming objects. However, in practice, the location of these regions can change between
consecutive frames as the position of F , which is obtained in each frame independently,
varies with the orientation of the optical flow field. To address this problem, we estimate the
location of an object and its closeness to the camera after global motion compensation and
based on TTC, respectively (Fig. 2). This solution is discussed in the next section.

3 Incoming object detection
We compensate the motion O by calculating the optical flow induced by the moving camera.
Let the camera-induced optical flow, Ô, be defined as

Ô = {(xi,yi, ûi, v̂i)}N
i=1 , (3)

where (ûi, v̂i) is the motion vector at (xi,yi) induced by the camera motion. We compute
Ô by applying a least square affine transformation to O [20]. Differences between Ô and O
highlight regions on the image plane whose motion differs from that of the camera. Given the
magnitude of the motion-vector difference m̂i = ||(ûi− ui, v̂i− vi)||2, our goal is to localise
incoming objects in each frame by detecting regions with large motion differences while
discarding large noisy motion vectors.

We localise the incoming objects using a lower resolution representation, later referred
to as confidence map, which is generated by analysing the m̂i values grouped into C cells
of g× g pixels. Let C = {c j}Cj=1 be the set of the centres c j = (x j,y j)

T of each cell j and
Â = {α̂ j}Cj=1 be the confidence map, where α̂ j ∈ [0,1] is the confidence value for cell j. The
larger α̂ j, the higher the confidence that cell j contains a moving object.

We calculate α̂ j by appropriately mapping the (100ρ)th percentile of the m̂i values of
cell j (Eq. 5). The (100ρ)th percentile, m j, is defined by considering the cumulative density
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Figure 3: Example of compensated motion using cells. A high percentile (m j at 98th per-
centile) can be used to detect a moving object that is far from the camera, also when only a
portion of the object falls within a cell.

function:
m j

∑
m̂i=m̂1

f (m̂i) = ρ, (4)

i.e. the area under the probability density function f (m̂i) to the left of m j is ρ (e.g. ρ =
0.98). Note that an object that is small or far from the camera may occupy only a portion
of a cell. We do not use the maximum m̂i within a cell in order to discard noisy values
that are likely to appear in the last percentiles (Fig. 3). Each m j is then mapped to the
corresponding confidence value α̂ j with a sigmoid function that uses as mean value the
optical flow magnitude induced by the camera motion:

α̂ j =
(

1+ e−(m j−M)
)−1

, (5)

where M is the (100ρ)th percentile of the compensated motion magnitude computed over
the whole frame (i.e. not per cell), defined by

M

∑
m̂i=m̂1

f (m̂i) = ρ. (6)

To infer the closeness of incoming objects to the camera we define T = {τ j}Cj=1, whose
elements τ j are the (100(1−ρ))th percentile of the TTC in cell j:

τ j

∑
τ̂i=τ̂1

f (τ̂i) = 1−ρ. (7)

A value of τ j closer to zero indicates a closer object.
Ideally, the compensated motion should be non-zero only for moving objects whose mo-

tion differs from that of the camera. However, noisy optical flow vectors are generated by
untextured areas, lens distortion, the aperture problem and may be amplified by the regulari-
sation. Moreover, when the robot flies close to the terrain, large motion vectors are generated
on the lower part of the frame. This spurious motion, which we refer to as background mo-
tion, may produce erroneously large α̂ j values (Fig. 4).

We learn the background motion by collecting past α̂ j samples in a temporally shifting
buffer, B = {B j}Cj=1, which is composed of local buffers B j (one for each cell j). The param-
eters of B j are T1, the number of frames used to learn the background motion (e.g. T1=15),
and T2, a learning delay (e.g. T2=3). This learning delay hiders the buffer to use the motion
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Figure 4: Removal of spurious motion caused by static objects and lens distortion. (a) Origi-
nal frame. (b) Compensated motion magnitude mapped via a sigmoid function (Â). (c) Map
with the 50th percentile distance computed from the background motion buffer (A).

of an incoming object to update the background model (i.e. using T2 increases the discrimi-
nation of moving objects when they become visible).

Let the samples α̂ j stored in B j be represented as α̂b
j , with b = 1, ...,T1. We compare

these samples with the incoming samples to detect moving objects using an approach similar
to ViBe [4]. ViBe was however used for image intensities and without any normalisations.
Let the difference db

j between the incoming α̂ j value and the stored α̂b
j be defined as

db
j =
|α̂ j− α̂b

j |
α̂ρ

j
∀b = 1, ...,T1, (8)

where the normalisation factor α̂ρ
j is the (100ρ)th percentile of the values in B j, which is

defined by
α̂ρ

j

∑
α̂b

j =α̂1
j

f (α̂b
j ) = ρ. (9)

If α̂ j is dissimilar from the background motion, cell j is deemed to belong to a moving
object. In this case the value to update the buffer for cell j is chosen randomly from one of
the eight closest neighbouring cells that are considered to represent background motion. If
no neighbours satisfy this condition, the buffer is updated with a random value selected from
the whole confidence map of the current frame.

A value α̂ j is considered to be similar to the background motion when its db
j is below

a threshold δ for more than half of the α̂b
j values in the buffer. When α̂ j is similar to the

background motion, its value is used to update the buffer via a first-in-first-out policy.
Note that the values α̂ j are distributed within [0,1] depending on the scene, thus affecting

differently the range of db
j values. An example where the values of db

j span different intervals
due to different distributions of α̂ j is shown in Fig. 5. We therefore design an adaptive
threshold δ that depends on the distribution of the distances db

j . We first determine dρ as
(100ρ)th percentile of db

j as
dρ

∑
db

j =d1
j

f (db
j ) = ρ. (10)

Then, assuming a normal distribution with variance dρ for the distances, an incoming object
is detected when db

j exceeds three standard deviations from the zero mean (i.e. we set δ =
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Figure 5: Example of adaptive threshold used to determine if α̂ j belongs to the background
motion model. The two distributions of α̂ j lead to different ranges of db

j . The green line
indicates the 98th percentile at 1.05 in (a) and at 0.46 in (b); whereas the red line indicates
three times the 98th percentile at 3.16 in (a) and at 1.39 in (b). The vertical axis has a
logarithmic scale to facilitate the comparison.

3dρ ). The elements of the output confidence map A = {α j}Cj=1 are therefore defined as

α j =

{
α̂ j if

(
∑T1

b=1 1(db
j )
)
> T1

2 ∨ α̂ j ≥ .75

0 otherwise,
(11)

where 1(·) is the indicator function that is equal to 1 when db
j > 3dρ . Moreover, the first

condition is logically or-ed with α̂ j ≥ .75 in order to detect objects that have become part of
the background after a long permanence in the same cell.

4 Collision avoidance
We aim to infer the position of a safe point on the image plane that a flying robot can use to
produce steering commands to avoid an incoming object. For example, the position of the
safe point can be mapped to the heading body direction of the robot.

To define regions to be avoided we use a prior distribution for the safe point Φq = (xq,yq)
and a likelihood function that accounts for the position of potential incoming objects and the
TTC measures. We then generate a posterior distribution over the image plane Φ using a
Bayesian approach [1]. Let the distribution of possible safe points be a probability density
function (pdf) built with a mixture of inverted Gaussians, whose minima are centred on the
detected moving objects and whose variances are inversely proportional to their TTC. The
closer an object to the camera, the smaller the (minimum) value corresponding to the location
of the object on the image plane.

Let Vq define the validity of the prior safe point quantified via a probability distribution
whose value is the maximum of the distribution when the safety is the highest. Let Σp be the
covariance of the prior distribution: a smaller covariance makes the maximum of the prior
distribution larger and the desired safe point easier to follow. The prior distribution is defined
as

p(Vq = 1|Φ,Φq) = e−
1
2 (Φ−Φq)

T Σ−1
p (Φ−Φq). (12)

Let the level of security of a safe point Vj be proportional to the size of the region the
likelihood function generates to avoid a potential incoming object. The likelihood function,
which uses α j and τ j for each cell centre c j, is defined as

p(Vj = 1|Φ,c j,τ j,α j) = 1−α je−
1
2 (Φ−c j)

T Σo(Φ−c j), (13)
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where the elements of Σo = diag(σ2
o ,σ2

o ), which regulates the variance of a mode localised
on an object, are inversely proportional to the TTC (note that Σo is purposefully not inverted):

σo = ε +κ

(
1− e−

1
2

( τ j
στ

)2
)
, (14)

where κ modulates the contribution of the Gaussian function, στ is the cut-off coefficient for
TTC values and ε is the coefficient that limits the expansion of the variance of the inverted
Gaussian. The smaller ε and κ , the larger the standard deviation of the constructed inverted
Gaussian around a likely incoming object. We refer to this area as risk region. The smaller
the TTC, the larger the minimum of the posterior distribution that contains this risk region.

Finally, the posterior distribution is defined as

p(Φ|Φq,C,T ,A,V,Vq) ∝ p(Vq = 1|Φ,Φq)
C

∏
j=1

p(Vj = 1|Φ,c j,τ j,α j), (15)

where V = {Vj}Cj=1 and the Vj are assumed to be i.i.d. for computational efficiency.
If α j = 0 ∀ j, no objects have to be avoided, the likelihood function generates a uniform

pdf and the safe point remains at S = Φq. A large α j is likely to represent a colliding object
and the risk region will expand based on the proximity of the object to the camera. This
leads the location of the safe point S to move with the maximum of the posterior

S = argmax
Φ

(p(Φ|Φq,C,T ,A,V,Vq)) (16)

when the TTC of the detected objects is sufficiently small.

5 Results
We evaluate the proposed method using a dataset with eight videos (S1,..., S8) with drones
undergoing mid-air collisions with a bird, a ball and other drones1. These videos include
several challenges such as far and close terrain views, different flying robot and incoming
object speeds, and dynamic backgrounds (e.g. water). The dataset consists of 1367 frames,
all resized to 720×480 pixels, at 25Hz. We compute the optical flow with the method from
[9] using its original parameters. The other parameters we used in the experiments are:
cell size g = 20, percentile ρ = 0.98, background motion buffer size T1 = 15, buffer delay
T2 = 3, modulation coefficient κ = 0.2, cut-off coefficient στ = 70 and expansion coefficient
ε = 0.01.

We compare our method with an approach for obstacle avoidance based on SURF [13]
and an approach for moving object segmentation based on the analysis of the phase change
of the Fourier spectra from the pixel intensities [21]. We also compare with three baseline
methods for moving object detection and with one method that uses a combination of optical
flow and SURF. The methods are: TB (threshold-based), which thresholds m j, the magnitude
difference of the compensated motion; TB+FP, which uses the TB optical flow features to
select SURF feature points (FP) on moving regions (this approach resembles the method
proposed in [1]); MF (mapping function), which uses a threshold applied to the motion
difference mapped with the sigmoid function; UB (unnormalised buffer), which uses a fixed

1Videos and results are available at: http://www.eecs.qmul.ac.uk/~andrea/avoidance.html
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S1 S2 S3 S4 S5 S6 S7 S8 F-scoreP R P R P R P R P R P R P R P R
[13] .01 .54 .00 .07 .00 .63 .01 .17 .04 .14 .01 .04 .03 .30 .03 .27 .01
[21] .23 .49 .02 .83 .01 .63 .25 .42 .27 .30 .44 .04 .33 .21 .34 .44 .10
Ours .97 .77 .26 .93 .04 .63 .76 .57 .99 .48 .94 .58 .77 .76 .46 .38 .51
TB .66 .49 .10 .97 .02 .94 .76 .46 .71 .63 .45 .88 .81 .20 .24 .62 .30
TB+FP .38 .33 .00 .03 .00 .56 .14 .21 .55 .23 .04 .06 .07 .18 .01 .52 .01
MF .95 .51 .38 .83 .03 .44 .99 .40 1 .40 .29 .05 .32 1 .31 .32 .38
UB .96 .67 .26 .90 .04 .63 .80 .48 .99 .47 .86 .39 .77 .76 .42 .33 .47

Table 1: Incoming object detection performance in terms of Precision (P) and Recall (R)
for each sequence (S1,..., S8) and average F-Score across all the sequences for the methods
under analysis. Key – Ours: the proposed approach; TB: threshold based; TB+FP: threshold
based + feature points; MF: mapping function. UB: unnormalised buffer.

Figure 6: Sample false positive (yellow), true positive (green) and false negative (red) results.

δ as threshold (similarly to ViBe [4]), without the normalisation of the elements within the
buffer. The thresholds of these alternative methods are chosen to provide the best results.

We quantify the incoming object detection accuracy using Precision, Recall and F-score.
As ground truth, we annotated a moving object with a bounding box when its size is at least
5×5 pixels. Table 1 compares the incoming object detection performance of the methods
under analysis. Overall, the proposed approach outperforms the other methods. Feature
point based methods (i.e. [13] and TB+FP) perform worse than the other methods. The
method proposed in [21] has lower Precision than TB. A major problem with [21] is with
large camera speeds. In fact, [21] has high Recall in S8 as the camera is almost stationary
but a large number of false positives in S2 and S3 as the robot flies at high speed generating
large displacements between consecutive frames. The compensated motion provides more
accurate detections than [21] when objects are small. For example, in S3 TB can detect an
incoming object when it is farther away than [21]. The performance of MF improves with
respect to that of TB. The sigmoid function can self-modulate its own mean value based on
the global motion, which makes the moving object detection adaptive to the speed of the
flying robot. Compared to UB, the buffer normalisation we use generates a higher Recall.

Fig. 6 shows three scenarios from S3 (left), S4 (centre) and S7 (right). In S3, we can
observe two large false positives: both regions are due to large-magnitude optical flow that is
not learnt by the background motion model. In S4, we observe that the proposed method can
detect multiple moving objects: the top object is located on a simple background, whereas
the bottom object is located on a cluttered background. In S7, a false negative is generated
by a highly noisy optical flow that prevents the object and the background (noise) from being
distinguishable.

We also quantify the relative time between the instant the safe point is computed and
the instant the impact occurs. In the absence of incoming objects, we set the safe point to
be in the centre of the frame. The maximum possible distance between the desired safe
point, Φq, and the computed safe point, S, is half the frame diagonal. We use this maximum
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Figure 7: Normalised distance between the desired and the computed safe points up to the
collision (occurring at frame 100) when varying ε for sequence S1 to S8. Green: ε = 0.001;
cyan: ε = 0.005; blue: ε = 0.01, magenta: ε = 0.05. The black vertical line indicates when
the object starts being included in the ground truth (note that in S5 and S6 the black line is
at frame 0).
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Figure 8: Time to contact (TTC) of an incoming object up to the collision (occurring at frame
100) for sequence S2, S4, S5 and S7. S2 and S4 show a decreasing trend. S5 and S7 are
affected by a large amount of noise that is due to inaccuracies of the optical flow.

distance to normalise the distance of S from the centre of the frame. Fig. 7 shows when the
Bayesian avoidance method generates the safe point before the collision occurs at varying
values of ε . The value ε = 0.01 is a good trade-off between stability and sensitivity of safe
points. Smaller values of ε lead to high instability when false positive detections occur (see
S3), whereas larger values lead to late or missed generations of safe points (see S1). The
generation of the safe point is also influenced by the noise in the optical flow, which corrupts
the TTC measures. As a consequence, the generation of safe points may occur considerably
later than the time instant when an incoming object becomes visible (see S1, S5, S7, S8 in
Fig. 7). For example, the optical flow noise makes the object not detectable between frame
80 and 95 in S5.

Finally, Fig. 8 shows the TTC measured during the last 100 frames before the collision. In
S2 and S4 it is visible from the trend of the TTC over time that the objects are getting closer.
This is also reflected in the corresponding results of Fig. 7, where we can see a variation of
the safe point happens as soon as the incoming object becomes visible. However, in S5 and
S7 the noisy TTC does not provide evidence to detect incoming objects as the TTC values
do not produce a decreasing trend. In fact, S5 and S7 show mostly no variations of the safe
point position in Fig. 7.
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6 Conclusions
We presented a visual collision detection method that is based on optical flow and is appli-
cable also when incoming objects become visible only a few seconds before collision with
a moving camera. We combined time to contact and compensated motion features with a
Bayesian collision avoidance method to infer safe points on the image plane. We also pro-
posed a methodology to learn the background motion to reduce false positive detections. The
proposed method can detect incoming objects 10 to 40 frames prior to collision and can be
synergistically used with other features or collision detection methods.

Future work includes improving the motion estimation accuracy to anticipate incoming
objects and to reduce the regularisation noise. Moreover, we will use temporal filtering to
reduce false positive detections and make predictive decisions about safe points. Finally, we
will model the steering manoeuvres to be selected based on the posterior pdf (Eq. 15) and on
quadcopter controllers designed for collision avoidance [10].
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