THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING 1

Fully-Trainable Deep Matching

James Thewlis Department of Engineering Science
jdt@robots.ox.ac.uk University of Oxford

Shuai Zheng Oxford, UK
shuai.zheng@eng.ox.ac.uk

Philip H. S. Torr
philip.torr@eng.ox.ac.uk

Andrea Vedaldi
vedaldi@robots.ox.ac.uk

Abstract

Deep Matching (DM) is a popular high-quality method for quasi-dense image match-
ing. Despite its name, however, the original DM formulation does not yield a deep neural
network that can be trained end-to-end via backpropagation. In this paper, we remove
this limitation by rewriting the complete DM algorithm as a convolutional neural net-
work. This results in a novel deep architecture for image matching that involves a num-
ber of new layer types and that, similar to recent networks for image segmentation, has
a U-topology. We demonstrate the utility of the approach by improving the performance
of DM by learning it end-to-end on an image matching task.

1 Introduction

Deep Matching (DM) [19] is one of the most popular methods for establishing quasi-dense
correspondences between images. An important application of DM is optical flow, where it
is used for finding an initial set of image correspondences, which are then interpolated and
refined by local optimisation.

The reason for the popularity of DM is the quality of the matches that it can extract.
However, there is an important drawback: DM, as originally introduced in [19], is in fact
not a deep neural network and does not support training via back-propagation. In order
to sidestep this limitation, several authors have recently proposed alternative Convolutional
Neural Networks (CNN) architectures for dense image matching (Sect. 1.1). However, while
several of these trainable models obtain excellent results, they are not necessarily superior to
the handcrafted DM architecture in term of performance.

The quality of the matches established by DM demonstrates the strength of the DM
architecture compared to alternatives. Thus, a natural question is whether it is possible to
obtain the best of both worlds, and construct a trainable CNN architecture which is equivalent
to DM. The main contribution of this paper is to carry out such a construction.

In more detail, DM comprises two stages (Fig. 1): In the first stage, DM computes a se-
quence of increasingly coarse match score maps, integrating information from progressively
larger image neighbourhoods in order to remove local match ambiguities. In the second

(© 2016. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms. Pages 145.1-145.12

DOLI: https://dx.doi.org/10.5244/C.30.145

https://dx.doi.org/10.5244/C.30.145

2 THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING

SRS

<> <> <> <> <> <>

NENEEE

Figure 1: Fully-Trainable Deep Matching. Deep matching starts by correlating small
patches p in the reference image I (crosses) with all the patches q in the target image I, pro-
ducing a 4D score map Sy (slices So(-|p) for varying p are shown); then, it computes coarser
but less ambiguous maps Sy, ...,Sz. In this paper, we formulate the reverse process, recon-
structing high resolution matches from coarser ones, as a sequence of reverse convolutional
operators, producing scores Qy,...,Qo (shaded area). The result is a deep convolutional
network with U-architecture that can be trained using backpropagation.

CORREL.

stage, the coarse information is propagated in the reverse direction, resolving ambiguities in
the higher-resolution score maps. While the first stage was formulated as a CNN in [19],
the second stage was given as a recursive decoding algorithm. In Sect. 2, we show that this
recursive algorithm is equivalent to dynamic programming and that it can be implemented
instead by a sequence of new convolutional operators, that reverse the ones in the first stage
of DM.

The resulting CNN architecture (Fig. 2), which is numerically equivalent to the original
DM, has a U-topology, as popularized in image segmentation [20], and supports backpropa-
gation. Combined with a structured-output loss (Sect. 2.2), this allows us to perform end-to-
end learning of the DM parameters, improving its performance (Sect. 3). Our findings and
further potential advantages of the approach are discussed in Sect. 4.

1.1 Related Work

The key reason for the success of CNNs in many computer vision applications is the abil-
ity to learn complex systems end-to-end instead of hand-crafting individual components. A
number of recent works have applied CNN-based systems to pixel-wise labeling problems
such as stereo matching and optical flow. In particular, Fischer et al. [5] have shown it is pos-
sible to train a fully convolutional network for optical flow. Zbontar et al. [28] trained a CNN
for stereo matching by using a refined stereo matching cost. Zagoruyko and Komodakis [27]
and Han et al. [7] have demonstrated learning local image description through a CNN.
Optical flow estimation was tackled mostly by variational approaches [3, 14, 25] since
the work of Horn and Schunk [8]. Brox and Malik [2] developed a system that integrates
descriptor matching with a variational approach. Recently, leading optical flow approaches
such as DeepMatching [19, 26] demonstrated a CNN-like system where feature information
is aggregated from fine to coarse using sparse convolutions and max-pooling. However, this
approach does not perform learning and all parameters are hand-tuned. EpicFlow [18] has
focused on refining the sparse matches from DM using a variational method that incorpo-
rates edge information. Fischer et al. [5] trained a fully convolutional network FlowNet for
optical flow prediction on a large-scale synthetic flying chair dataset. However, the results
of FlowNet do not match the performance of DM on realistic datasets. This motivates us to

THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING 3

So S1 S S S 1 St
CORR »> MP* 2» AG (Fw) MP*—» .. —» AG (Ew)
14 14
pooling
switches
L v
L UP 4 [« DA) UP4le——— .. «—— DA
Qo Q1 Q1 Q@y1 Q1 QL

Ey 2
Figure 2: End-to-end deep matching architecture, involving the following layers: descrip-
tor extraction (D), correlation (CORR), max pooling (MP), aggregation (AG), power (PW),
disaggregation (DA), unpooling (UP), summation (+), and structured loss (£). The shaded
area encloses our contribution, which amounts: formulating the DM decoding algorithm as
a sequence of convolutional neural network layers supporting backpropagation.

reformulate DM [19] as an end-to-end trainable neural network.

Beyond CNNs, many authors have applied machine learning techniques to matching
and optical flow. Sun er al. [23] investigate the statistical properties of optical flow and
learn the regularizers using Gaussian scale mixtures, Rosenbaum ez al. [21] use Gaussian
mixture models to model the statistics of optical flow, and Black er al. [1] apply the idea
of principal components analysis to optical flow. Kennedy and Taylor [9] train classifiers to
choose different inertial estimatiors for optical flow. Leordeanu ef al. [11] obtain occlusion
probabilities by learning classifiers. Menze et al. [16] formulate optical flow estimation as a
discrete inference problem in a conditional random field, followed by sub-pixel refinement.
In these works, tuning feature parameters is mostly done separately and manually. In contrast
to these works, our work aims to convert the whole quasi-dense matching pipeline into an
end-to-end trainable CNN.

2 Method

Our key contribution is to show that the full DM pipeline can be formulated as a CNN with
a U-topology (Fig. 2). The fine-to-coarse stage of DM was already given as a CNN in [19].
Here, we complete the construction and show that the DM recursive decoding stage can: (1)
be interpreted as dynamic programming and (2) be implemented by convolutional operators
which reverse the ones used in the fine-to-coarse stage (Sect. 2.1). The architecture can be
trained using backpropagation, for which we propose a structured-output loss (Sect. 2.2).

2.1 Fully-Trainable Deep Matching Architecture

In this section we formulate the complete DM algorithm as a CNN. Consider a reference
image Iy(p),p = (p1,p2) and a target image 1 (q),q = (¢q1,92). The goal is to estimate a
correspondence field T : R? — R?,p — q mapping points p in the reference image to corre-
sponding points q in the target image. The correspondence field is found as the maximizer

['(p) = argmaxSo(q|p) (1)
q

4 THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING

of a scoring function Sy(q|p) that encodes the similarity of point p in Iy with point q in I;
(the score has of course an implicit dependency on Iy and I).!

A simple way of defining the scoring function Sy is to compare patch descriptors. Thus,
let ¢(q|l) € R? be a visual descriptor of a patch centred at q in image I; furthermore, assume
that ¢ is L? normalised. The score of the match p — q can be defined as the cosine similarity
of local descriptors, given by the inner product:

So(qlp) = (¢ (pllo), ¢ (a|r)). (2)

A significant drawback of this scoring function is that it pools information only locally,
from the compared patches. Therefore, unless all patches have a highly distinctive local
appearance, many of the matches established by eq. (1) are likely to be incorrect.

Correcting these errors requires integrating global information in the score maps. In or-
der to do so, DM builds a sequence of scoring functions S;(q|p),/ =0, 1,2,...,L which are
increasingly coarse but that incorporate information from increasingly larger image neigh-
borhoods (Fig. 1 top). Given these maps, equation (2) is replaced by a recursive decoding
process that extracts matches by analysing S;,S7—1,...,Sp in reverse order.

While the authors of [19] already showed that maps S; can be computed by convolutional
operators, they did not formulate the decoding stage of DM as a network supporting end-to-
end learning. Here we show that the recursive decoding process can be reformulated as the
computation of additional score maps Q;(q|p),/ =L,L—1,...,1 (Fig. | bottom) by reversing
the convolutional operators used to compute Sp, S, . ..,S.. The two stages, fine to coarse and
coarse to fine, are described in detail below.

Stage 1: Fine to coarse. DM starts with the scoring function Sy, computed by comparing
local patches as explained above, and builds the other scores by alternating two operations:
max pooling and aggregation.

The max pooling step pools scores S; with respect to the first argument q in a square
of side of 2/*1ng pixels, where 1 is a parameter. This results in an intermediate scoring
function S 5:

Sy, (alp) = max { Si(q[p), ¥4 : '~ gl < 2'mo ©

In the following, the locations of the local maxima, also known as pooling switches, will be
denoted as q" = m;(q|p), where m; is defined such that S, /»(q|p) = S;(m;(q|p)|p). Note
that max pooling is exactly the same operator as commonly defined in convolutional neural
networks. The resulting score S;, /2(q\p) can be interpreted as the strength of the best match

between p in the reference image and all points within a distance 2/1g from q in the target
image.

After max pooling, the scores are aggregated at the four corners of a square patch of
side 2/ &y pixels:

\%

|4
Si+1(alp) = [Z ZSI+%(Q+2151'\P+2151') 4)
i=1

where 8; = (80/2)€&;, & > 0 is a parameter, and €; are the unit displacement vectors:

o[wo[) o fl o[

! As proposed in DM, matches can be verified by testing whether they maximize the score also when going from
the target image I; back to the reference image image Iy: verified(p) = [Vp' : Q(T'(p)[p) > O(I'(p)|p’)]-

THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING 5

The exponent v (set to 1.4 in DM) monotonically rescales the scores, emphasising larger
ones. As detailed in [19], the score S;(q|p) can be roughly interpreted as the likelihood that
a deformable square patch of side 2/*1 8, centered at p in the reference image Iy matches an
analogous deformable patch centered at q in the target image /.

Eq. (4) can be rewritten as the convolution of §;,/, with a particular 4D filter. Note
that most neural network toolboxes are limited to 2+1D or 3+1D convolutions (with 2 or 3
spatial dimension plus one spanning feature channels), whereas here there are four spatial
dimensions (given by the join of p and) and one feature channel, i.e. the convolution is
4+1D. Hence, while implementing aggregation through convolution is more general, for the
particular filter used in DM a direct implementation of (4) is much simpler.

Part 2: Coarse to fine. In the original DM, scores Sy, S1,...,S are decoded by a recursive
algorithm to obtain the final correspondence field. Here, we give an equivalent algorithm that
uses only layer-wise and convolutional operators, with the major advantage of turning DM
in an end-to-end learnable convolutional network. Another significant advantage is that the
final product is a full, refined score map Qg assigning a confidence to all possible matches
rather than finding only the best ones.

Since the last operation in the fist stage was to apply aggregation to S; _ to obtain S,
the first operation in the reverse order is disaggregation. In general, Q; is disaggregated to
obtain Q1 as follows:

0, y(alp) = max {0111 (a—2'8|p—2'8), i=1,2,3,4}. 5)

Disaggregation is similar to deconvolution [12, 17, 20, 29] or convolution transpose [24]
as it reverses a linear filtering operation. However, a key difference is that overlapping
contributions are maxed out rather than summed.

Next, Q; is obtained by unpooling 0, , and adding the result to S;(q|p):

0,(alp) = Si(q|p) + max {QH; (d'lp),Yq' :my(q'Ip) = q} U{—eo}. (6)

Unpooling is also found in architectures such as deconvnets; however here 1) the result is
infilled with —eo rather than zeros and 2) overlapping unpooled values are maxed out rather
than summed. The result of unpooling is summed to S;(q|p) to mix coarse and fine grained
information.

Next, we discuss the equivalence of these operations to the original DM decoding algo-
rithm. In the fine to coarse stage, through pooling and aggregation, the score So(qo|po) con-
tributes to the formation of the coarser scores S;(q;|p1),---,5.(qz|pr) along certain paths
(P1,91),---,(PL,qr) restricted to the set:

H(qo|po) = {(P0,Q0,P1,Q1,---,qr) : VI Ji: pr=pr1 —2'8:, @ =my(qre1 —2'8|pr)}-

DM associates to the match qg|po the sum of the scores along the best of such paths:

L
Qo(qolpo) = maX{ZSZ(QZPZ) : (P0,90,P1,41,---,4qL) € 7'1((10|Po)} :
i=0

DM uses recursion and memoization to compute this maximum efficiently; the disaggrega-
tion and unpooling steps given above implement a dynamic programming equivalent of this
recursive algorithm. This is easily proved; empirically, the two implementations were found
to be numerically equivalent as expected.

6 THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING

2.2 Training and loss functions

Training with DM requires to define a suitable loss function for the computed scoring func-
tion S. One possibility is to minimise the distance £(S,I'g) = meanp ¢ ||S(q|p) — go(q —
[o(p))||> between S and a smoothed indicator function g4 (z) = exp(—||z||?/206?) of the
ground truth correspondence field I'j. While a similar loss is often used to learn keypoint
detectors with neural networks [7, 13], it has two drawbacks: first, it requires scores to at-
tain pre-specified values when only relative values are relevant and, second, the loss must be
carefully rebalanced as g (q —I'o(p)) ~ O for the vast majority of pairs (p,q).

In order to avoid these issues, we propose to use instead the following structured output

loss:

L(8,To) = Y max{0,1—go(q—To(p)) +S(qlp) —S(To(p)[p)}.
P.q

Here, the term 1 — g5(q —I'g(p)) defines a variable margin for the hinge loss, small when
q ~ I'g(p) and close to 1 otherwise. This loss looks at relative scores; in fact £(S,I9) =0
requires the correct matches to have score larger than incorrect ones. Furthermore, it is
automatically balanced as each term in the summation involves comparing the score of a
correct and an incorrect match.

Note that DM defines a whole hierarchy of score maps (So,...,S7,0r,...,00) and a
loss can be applied to each level of the hierarchy. In general, we expect application at the
last level Q; to be the most important, as this reflects the final output of the algorithm, but
combinations are possible. For n training image pairs (x(()l),xgl) , F(i)), and by denoting with
w the parameters of DM, learning reduces to optimizing the objective function:

. A 1 ¢ i) (i i
min = [wiP +~ Y £(0(x) x)":w), 1)),
i=1

We follow the standard approach of optimizing the objective using (stochastic) gradient de-
scent [10]. This requires computing the derivative of the loss and DM function Q; w.r.t. the
parameters w, which can be done using backpropagation. Note that, while derivations are
omitted, all layers in the DM architecture are amenable to backpropagation in the usual way.

2.3 Discretization

So far, variables q and p have been treated as continuous. However, in a practical implemen-
tation these are discretized. By choosing a discretization scheme smartly, we can make the
implementation more efficient and simpler. We describe such a scheme here.

For efficiency, DM doubles at each layer the sampling stride of the variable q and restricts
the match ¢ to be within a given maximum distance of p. Hence, q is sampled as:

q=2%k —1—-R)+p, ke{l,....2R +1}>,

where K; is a discrete index, 7} is the sampling stride (in pixels) at level [= 0, YRo the
distance to p at level 0, and R;; = [R;/2] is halved with each layer. In this expression, and
in the rest of the section, summing a scalar to a vector means adding it to all its components.

For efficiency, DM is usually restricted to a quasi-dense grid of points p in the reference
image, given by:

p=o(ii—1+7)+ o, i€ {l, H}x{l,... W}, 7=1x (%_ {%D

THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING 7

The parameters o and By are the stride and offset of the patch descriptors extracted from
the reference image and they remain constant at all layers; however, there is an additional
variable offset 7; to compensate for the effect of discretization in aggregation, as explained
below. Here, the symbol 1;> is one if the condition / > 1 is satisfied and zero otherwise.

From these definitions, the discretized score maps, denoted with a bar, are given by
Si(kiliy) = Si(alp), Si+1/2(Ki+1[ir) = Sp41/2(q|p), and similarly for Q.

Simplifications arise by assuming that } divides exactly the pooling window size 7, that
 divides &, and that y divides . Under these assumptions, S;, /2(ky11li;) is obtained
from S;(k;|i;) by applying the standard CNN max pooling operator with a pooling window
size W = 14219/ and padding P = Mo/ + 2R;+1 — R;. Note in particular that W is the
same at all layers. Since usually 19 = 9, this amounts to 3 X 3 pooling with a padding of
zero or one pixels. The discretized aggregation operator is also simple and given by:

. o
i+ 21@& —Til=o | -

_) 1 & -
Sie1(Kpprlipg1) = i SLIEe! <k1+1
=1

l

Note that, since q is expressed relatively to p, aggregation reduces to averaging selected
slices of the discretized score maps (i.e. there is no shift applied to k;,). Note also that for
[> 1, given that oy divides &, the increment applied to the index i, | is integer as required.
For [= 0 and ap = &y (as it is usually the case), the shift 8y /2ap = 1/2 is fractional. In this
case, however, the additional offset 7 = —1/2 restores integer coordinates as needed.

3 Experiments

The primary goal of this section is to demonstrate the benefit of learning the DM parameters
using backpropagation compared to hand-tuning. There are several implementations of DM
available online; we base ours on the GPU-based version by the original authors” [19], except
for the decoding stage for which we use their CPU version with memoization removed.
We do so because this eliminats a few small approximations found in the original code.
This version is the closest, and in fact numerically equivalent, to our implementation using
MatConvNet [24] and our new convolutional operators.

Datasets. The MPI Sintel [4] dataset contains 1,041 image pairs and correspondence fields
obtained from synthetic data (computer graphics). Scenes are carefully engineered to con-
tain challenging conditions. There are two versions: clean and final (with effects such as
motion blur and fog). We consider a subset of the Sintel clean training set to evaluate our
methodology. This is dubbed SintelMini, and consists of 7 sequences (313 images) for train-
ing and every 10th frame from a different set of 5 sequences (25 images) for validation. The
FlyingChair dataset by Fischer ef al. [5] contains synthetically-generated data as Sintel,
but with abstract scenes consisting of “flying chairs”. It consists of respectively 22,232/640
train/val image pairs and corresponding flow fields. These images are generated by rendering
3D chair models in front of random background images from Flickr, while the motions of
both the chairs and the background are purely planar. The KITTI flow 2012 [6, 15] dataset
contains 194/195 training/testing image pairs and correspondence fields for road scenes. The
data contains large baselines but only motions arising from driving a car. Ground truth cor-
respondences are obtained using 3D laser scanner and hence are not available at all pixels.

http://lear.inrialpes.fr/src/deepmatching/.

8 THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING

Patch Training set Elements learned Acc@2 Acc@5 Acc@l10 EPE EPE

descr. expon. features (matches) (flow)
(a) HOG — X X 84.52% 91.89% 94.36% 3.83 1.88
(b) HOG Sintel Mini v X 84.59% 92.03% 94.49% 3.73 1.84
(¢ CNN — X X 85.28% 92.25% 94.83% 3.58 1.80
(d) CNN Sintel Mini v X 8530% 92.27% 94.87% 3.70 1.64
(e) CNN Sintel Mini X v 86.81% 92.52% 94.86% 3.37 1.60
(f) CNN Sintel Mini v v 86.79% 92.58% 94.90% 3.34 1.57
(g2 CNN Flying Chairs v v 86.11% 92.47% 94.88% 3.33 1.65

Table 1: Fully-Trainable DM performance. DM variants evaluated on Sintel Mini (see
text) validation and trained on either Sintel Mini training or Flying Chairs. The top row
corresponds to the baseline DM algorithm, equivalent to the GPU version of [18].

Furthermore, the flow is improved by fitting 3D CAD models to observed vehicles on the
road and using those to compute displacements.

Evaluation metrics. In order to measure matching accuracy, we adopt the accuracy@T
metric of Revaud et al. [19]. Given the ground truth and estimated dense correspondence
fields I'p,I": p — q from image Iy : Q9 — R to image I : Q; — R, accuracy@T is the
fraction of pixels in Qg correctly matched up to an error of T pixels, i.e. [{q € Qo : ||To(q) —
To(q)]] < T} /|Q0|.* In addition to accuracy@T, we also consider the end point error
(EPE), obtained as the average correspondence error meangegq, ||[I'(q) —I'o(q)|. In all cases,
scores are averaged over all image pairs to yield the final result for a given dataset. If ground
truth correspondences are available only at a subset of image locations, € is restricted to
this set in the definitions above. For the KITTI dataset, we report in particular results for Qg
restricted to non-occluded ares (NOC) and all areas (OCC).

Implementation details. For DM, unless otherwise stated we use L = 6 layers, R = 80
pixels, og = 0 =8, Bp =4, 1 = 1, np = 1.4. Training uses an NVIDIA Titan X GPU with
12 GBs of on-board memory. Training uses stochastic gradient descent with momentum
with mini-batches comprising one image pair at a time (note that an image pair can be seen
as the equivalent of a very large batch of image patches).

3.1 Results

End-to-end DM training. In our first experiment (Table 1) we evaluate several variants of
DM training. To do so, we consider the smaller and hence more efficient Sintel Mini dataset,
a subset of Sintel described above. In Table 1 (a) vs (b) we compare using the default
value of v = 1.4 used to modulate the output of the aggregation layers and learning values
v;,l =1,...,L specific for each layer. Even with this simple change there is a noticeable
improvement (+0.13% acc@10). Next, we replace the HOG features with a trainable CNN
architecture ¢ to extract descriptors from image patches. We use the first four convolutional
layers (convl_1, convl_2, conv2_1, conv2_2) of the pre-trained VGG-VD network [22].
Just by replacing the features, we notice a further improvement ((a) vs (c) +0.47% acc@10)
of DM, which can be increased by learning the DM exponents (d). Most interestingly, in
(f) we obtain a further improvement by back-propagating from DM to the feature extraction

3Following [19], the quasi-dense DM matches are first filtered by reciprocal verification and then correspon-
dences are propagated to all pixels by assigning to each point the same displacement vector of the most confident
available nearest available neighbor ¢’ within a L*-radius of 8 pixels by setting I'(q) =T'(q') —q' +q.

THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING 9

Method Training Test Acc@2 Acc@5 Acc@10 EPE EPE Err-OCC
(matches) (flow) (flow 3px)
FlowNet S+v [5] Flying Chairs ~ KITTI12 - - - 6.50 -
DM-HOG — KITTII12 60.50% 79.34% 84.27% 11.39 3.59 16.56%
DM-CNN — KITTII12 61.21% 78.81% 84.01% 12.29 4.11 17.78%
DM-CNN Flying Chairs ~ KITTI12 63.90% 80.11% 84.71% 11.12 3.61 16.41%
FlowNet S+v [5] Flying Chairs Sintel Final - - - - 4.76 -
DM [19] — Sintel Final - - 89.2% - 4.10 -
DM-HOG — Sintel Final 74.37% 85.26% 89.39% 7.08 3.72 11.44%
DM-CNN — Sintel Final 75.15% 85.42% 89.48% 7.03 3.63 11.52%
DM-CNN Flying Chairs Sintel Final 76.55% 86.22% 90.03 % 6.77 3.50 11.10%
FlowNet C+v [5] Flying Chairs Sintel Clean - - - - 3.57 -
DM-HOG — Sintel Clean 82.51% 90.18% 92.70% 5.26 2.32 7.00%
DM-CNN — Sintel Clean 83.03% 90.24% 92.87% 5.22 225 6.85%
DM-CNN Flying Chairs Sintel Clean 84.16% 90.85% 93.31% 4.78 2.14 6.51%

Table 2: Performance comparison. We train DM variants on large-scale synthetic dataset
Flying Chairs, and evaluate on KITTI 12 train and Sintel train. Acc@n [19] assigns each
pixel a nearby match, measuring the proportion correct within n pixels. EPE (endpoint er-
ror) is the mean euclidean distance between estimated flow vectors and the ground truth
(considering just pixels where ground truth is available). EPE (matches) is computed only
at the positions where we have our quasi-dense matches. EPE (flow) measures the endpoint
error for the flow estimation, where flow is produced by post-processing the matches with
EpicFlow [18]. Err-OCC likewise measures the dense flow, giving proportion of flows off
by more than 3 pixels. The version excluding occlusions, Err-NOC, is given in the text.

layers and optimizing the features themselves (hence achieving end-to-end training from the
raw pixels to the matching result). The last experiment (g) shows that similar improvements
can also be obtained by training from completely unrelated datasets, namely Flying Chairs,
indicating that learning generalizes well.

Standard benchmark comparisons. To test DM training in realistic scenarios, we evaluate
performance on two standard benchmarks, namely the Sintel and KITTI 2012 training sets
(Table 2) as these have publicly-available ground truth to compute accuracy. For training,
we use Flying Chairs, which is designed to be statistically similar to the Sintel target dataset.
Compared to the HOG-DM baseline, training the CNN patch descriptors in DM improves
accuracy @10 by +0.44% on KITTTI and by +0.64% on Sintel Final.

An application of DM is optical flow, where it is usually followed by interpolation and
refinement such as Brox and Malik [2] or EpicFlow [18]. We use EpicFlow to interpolate
our quasi-dense matches and compare the EPE results of FlowNet [5]. While there are better
methods than FlowNet for optical flow estimation, we choose it for comparison as this was
proposed as a fully-trainable CNN for dense image matching; we compare to their results
using variational refinement (+v) which is similar to EpicFlow interpolation. We train our
method on Flying Chairs to allow a direct comparison with the results reported in [5].

Compared to the pretrained CNN, training further on Flying Chairs gives a notable im-
provement in EPE, decreasing from 3.63 to 3.50 for Sintel Final and from 4.11 to 3.61 for
KITTI. Compared to HOG, the improvement is even greater for Sintel Final, a gap of 0.22
pixels, however for KITTI the CNN is initially worse than HOG. Training on synthetic data
improves most metrics on KITTI, with the exception of EPE (flow). We believe the latter
result to be due to the fact that the EpicFlow refinement step, which is not trained, is not op-
timally tuned to the different statistics of the improved quasi-dense matches. The refinement
step is in fact known to be sensitive to the data statistics (for example, in [18] different tun-
ings are used for different datasets). If we exclude occlusions in the ground truth for KITTI,

10 THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING

our trained CNN gets EPE-NOC of 1.43 compared to 1.51 for HOG, and Err-NOC falls from
7.84% to 7.41%.

FlowNet EPEs on KITTI12-Train and Sintel Final Train are respectively 6.50 and 4.76,
whereas our trained DM-CNN model has EPEs of 3.61 and 3.50 respectively. This confirms
the benefit of the DM architecture, which we turn into a CNN in this paper.

4 Summary

In this paper, we have shown that the complete DM algorithm can be equivalently rewritten
as a CNN with a U-topology, involving a number of new CNN layers. This allows to learn
end-to-end the parameters of DM using backpropagation, including the CNN filters that
extract the patch descriptors, robustly improving the quality of the correspondence extracted
in a number of different datasets.

Once formulated as a modular CNN, components of DM can be easily replaced with
new ones. For instance, the max pooling and unpooling units could be substituted with soft
versions, resulting in denser score maps, which could result in easier training and in the
ability of better expressing the confidence of dense matches. We are currently exploring a
number of such extensions.

For the problem of optical flow estimation, it is still required to have EpicFlow as a post-
processing step. This type of two-stage approach results a suboptimal solution. In particular,
the parameters of EpicFlow are not optimized by end-to-end training with our DM. We would
like to explore a solution that allows end-to-end optical flow estimation.

Acknowledgements. This work was supported by the AIMS CDT (EPSRC EP/L015897/1)
and grants EPSRC EP/N019474/1, EPSRC EP/1001107/2, ERC 321162-HELIOS, and ERC
677195-IDIU. We gratefully acknowledge GPU donations from NVIDIA.

References

[1] Michael J. Black, Yaser Yacoob, Allan D. Jepson, and David J. Fleet. Learning param-
eterized models of image motion. In /EEE CVPR, 1997.

[2] Thomas Brox and Jitendra Malik. Large displacement optical flow: Descriptor match-
ing in variational motion estimation. /[EEE TPAMI, 33(3):500-513, 2011.

[3] Thomas Brox, Andres Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy
optical flow estimation based on a theory for warping. In ECCV, 2004.

[4] Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black. A naturalistic
open source movie for optical flow evaluation. In ECCV, 2012.

[5] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Hiusser, Caner Hazirbas,
Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In IEEE ICCV, 2015.

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite. In /[EEE CVPR, 2012.

THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING 11

[7] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C Berg.
Matchnet: Unifying feature and metric learning for patch-based matching. In /IEEE
CVPR, 2015.

[8] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intel-
ligence, 17(3):185-203, 1981.

[9] Ryan Kennedy and Camillo J. Taylor. Optical flow with geometric occlusion estimation
and fusion of multiple frames. In EMMCVPR, 2015.

[10] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. In Proceedings of the IEEE, 1998.

[11] Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-
dense matching for motion and occlusion estimation. In IEEE ICCV, 2013.

[12] Jon Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In /EEE CVPR, 2015.

[13] Jonathan Long, Ning Zhang, and Trevor Darrell. Do convnets learn correspondence?
In NIPS, 2014.

[14] Etienne Memin and Patrick Perez. Dense estimation and object-based segmentation of
the optical flow with robust techniques. IEEE TIP, (5):703-719, 1998.

[15] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In
IEEE CVPR, 2015.

[16] Moritz Menze, Christian Heipke, and Andreas Geiger. Discrete optimization for optical
flow. In GCPR, 2015.

[17] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution net-
work for semantic segmentation. In /IEEE ICCV, 2015.

[18] Jérome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid.
Epicflow: Edge-preserving interpolation of correspondences for optical flow. In IEEE
CVPR, 2015.

[19] Jérome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. Deep-
matching: Hierarchical deformable dense matching. IJCV, 2015.

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks
for biomedical image segmentation. In MICCAI, 2015.

[21] Dan Rosenbaum, Daniel Zoran, and Yair Weiss. Learning the local statistics of optical
flow. In NIPS, 2013.

[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In /CLR, 2015.

[23] Deqing Sun, Stefan Roth, J.P. Lewis, and Michael J. Black. Learning optical flow. In
ECCV, 2008.

12 THEWLIS ET AL.: FULLY-TRAINABLE DEEP MATCHING

[24] Andrea Vedaldi and Karel Lenc. MatConvNet: Convolutional neural networks for
MATLAB. In ACM MM, 2015.

[25] Andreas Wedel, Daniel Cremers, Thomas Pock, and Horst Bischof. Structured motion-
adaptive regularization for high accuracy optical flow. In IEEE ICCV, 2009.

[26] Philippe Weinzaepfel, Jérome Revaud, Zaid Harchaoui, and Cordelia Schmid. Deep-
flow: Large displacement optical flow with deep matching. In IEEE ICCV, 2013.

[27] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via
convolutional neural networks. In JEEE CVPR, 2015.

[28] Jure Zbontar and Yann LeCun. Stereo matching by training a convolutional neural

network to compare image patches. The Journal of Machine Learning Research, 17
(65):1-32, 2016.

[29] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolu-
tional networks. In /IEEE CVPR, 2010.

