
RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET 1

Mapping Auto-context Decision Forests to
Deep ConvNets for Semantic Segmentation

David L. Richmond*1

Dagmar Kainmueller*1

Michael Y. Yang2

Eugene W. Myers1

Carsten Rother2

1 Max Planck Institute of Molecular Cell
Biology and Genetics
Dresden, DE

2 Technical University of Dresden
Dresden, DE

1 Supplemental Materials
In Section 1.1.1, we describe the training parameters used to train the stacked RF and deep
ConvNet for the Kinect example (Section 4.1 in the paper). In Section 1.1.2, we describe the
training parameters used to train the stacked RF and deep ConvNet for the zebrafish example
(Section 4.2 in the paper). We also describe the parameters used for training the equivalent
deep ConvNet with random weight initialization. In Section 1.2, we present the algorithm
developed to map the parameters from a RF-initialized ConvNet back to the original stacked
RF, after training by back-propagation (Section 3.2 in the paper). Additionally, we include
Supplemental Figures 1 and 2, which are referenced from the paper.

1.1 Training Parameters
1.1.1 Kinect

Stacked RF. We trained a two-level stacked RF, with the following parameters at every
level: 10 trees, maximum depth 12, stop node splitting if less than 25 samples. We selected
20 samples per class per image for training, and used the scale invariant offset features from
[3], with standard deviation, σ = 50 in each dimension. Each split node selected the best
from a random sample of 100 such features.

ConvNet. We mapped the RF stack to a deep ConvNet with 5 hidden layers, as described
in Section 3.1. For efficient training, the global parameters influencing the sharpness of the
tanh activation functions were reduced such that the network could transmit a strong gradient
via back-propagation. However, softening these parameters moves the deep ConvNet further
from its initialization by the equivalent stacked RF. We evaluated a range of initialization
parameters and found str01 = str34 = str67 = 100, str12 = str45 = str78 = 1, str23 = str56 =
str89 = 0.1 to be a good compromise, where stri j is the multiplicative factor applied to
weights, wHi,H j , and bias, bH j .

We trained the ConvNet using back-propagation and stochastic gradient descent (SGD),
with a cross-entropy loss function. During back-propagation, we maintained the sparse con-
nectivity from RF initialization, allowing only the weights on pre-existing edges to change,
corresponding to the sparse training scheme from [5].
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Since the network is designed for whole-image inputs, we first cropped the training im-
ages around the region of foreground pixels, and then down-sampled them by 25x. Learn-
ing rate, r, was set such that for the ith iteration of SGD, r(i) = a(1+ i/b)−1 with hyper-
parameters a = 0.01 and b = 400 iterations. Momentum, µ , was set according to the follow-
ing schedule: µ = min{µmax,1−3/(i+5)}, where µmax = 0.95 [4].

1.1.2 Zebrafish

Stacked RF. We trained a three-level RF stack, with the following forest parameters at every
level: 16 trees, maximum depth 12, stop node splitting if less than 25 samples. Features
were extracted from the images using a standard filter bank, and then normalized to zero
mean, unit variance. The number of random features tested in each node was set to the
square root of the total number of input features. For each randomly selected feature, 10
additional contextual features were also considered, with X and Y offsets within a 129x129
pixel window. Training samples were generated by sub-sampling the training images 3x in
each dimension and then randomly selecting 25% of these samples for training.

ConvNet. We mapped the RF stack to a deep ConvNet with 8 hidden layers. The
ConvNet was initialized and trained exactly as for the Kinect example, with the following
exeptions: (i) We used a class-balanced cross-entropy loss function, (ii) Training samples
were generated by sub-sampling the training images 9x in each dimension. (iii) Learning rate
parameters were as follows: a = 0.01 and b = 96 iterations. (iv) Momentum was initialized
to µ = 0.4, and increased to 0.7 after 96 iterations. We observed convergence after only 1-2
passes through the training data, similar to what was reported by [1].

ConvNet from Random Initialization. As discussed in Section 4.2 of the paper, for
comparison to the RF-initialized weights described above, we also trained ConvNets with the
same architecture, but with random weight initialization. Weights were initialized according
to a Gaussian distribution with zero mean and standard deviation, σ = 0.01. We applied a
similar SGD training routine, and re-tuned the hyper-parameters as follows: a = 3 ∗ 10−5,
b = 96 iterations, momentum was initialized to 0.4 and increased to 0.99 after 96 iterations.
Larger step-sizes failed to train. Networks were trained for 2500 iterations.

Fully Convolutional Network. As discussed in Section 4.2 of the paper, we also com-
pared our method with the Fully Convolutional Network (FCN) [2]. This network was down-
loaded from Caffe’s Model Zoo∗, and initialized with weights fine-tuned from the ILSVRC-
trained VGG-16 model. We trained all layers of the network using SGD with a learning rate
of 10−9, momentum of 0.99 and weight decay of 0.0005.

1.2 Mapping Back Algorithm

The following algorithm was used to map the parameters from a trained ConvNet back to
the original stacked RF architecture, and is referred to as Map Back #2 (see Section 3.2
of the paper). We applied this algorithm to the zebrafish data set (Figure 1: panel 3, and
Supplemental Figure 2(f)).

∗https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn
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Algorithm 1 Algorithm for mapping deep ConvNet back to K-level stacked RF
1. Push all training data through ConvNet
2. Store activations ax(H3k−1(l)), for k = 1...K
for i = 1 : K do

Push all training data through stacked RF to level i
Store leaf(x), for every tree and every sample x, at level i
Update votes in ith RF to ŷl

c, according to Equation 2
end for

(a) (b) (c)

Figure 1: Mapping ConvNet back to a RF. (a) Three samples (blue, magenta, green) falling
into the leaf of a DT, corresponding to a subset of feature space, have the same posterior
distributions; however, in a ConvNet their posteriors can be different. (b) Corresponding
activation pattern a(H2(l)) for the three samples shown in (a) at hidden layer 2 of the RF-
initialized ConvNet. Radius of circles denotes the strength of the activation. The output
layer receives the inner product of the activation pattern with weights wH2(l),c (only weights
to class 1 shown for simplicity). (c) Activation pattern in corresponding DT. Note, the inner
product reduces to the value yl

1 for class 1. In Equation 2, we compute the optimal value of
yl

c, namely ŷl
c, to mimize the difference between the output of the DT and the ConvNet.

(a) (b) (c) (d) (e) (f)

Figure 2: Comparison of different methods for zebrafish somite labeling. (a) Raw image
of zebrafish. Yellow box denotes crop for b,c,d,f. (b) Ground truth labeling. (c) Prediction
of stacked RF. (d) Prediction of corresponding deep ConvNet, after parameter refinement by
back-propagation. (e) Prediction of “Map Back #1” stacked RF. (f) Prediction of “Map Back
#2” stacked RF. See Section 3.2 for details of map back algorithms.
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