
RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET 1

Mapping Auto-context Decision Forests to
Deep ConvNets for Semantic Segmentation

David L. Richmond*1

Dagmar Kainmueller*1

Michael Y. Yang2

Eugene W. Myers1

Carsten Rother2

1 Max Planck Institute of Molecular Cell
Biology and Genetics
Dresden, DE

2 Technical University of Dresden
Dresden, DE

Abstract

We consider the task of pixel-wise semantic segmentation given a small set of labeled
training images. Among two of the most popular techniques to address this task are Ran-
dom Forests (RF) and Neural Networks (NN). In this work, we explore the relationship
between two special forms of these techniques: stacked RFs (namely Auto-context) and
deep Convolutional Neural Networks (ConvNet). Our main contribution is to show that
Auto-context can be mapped to a deep ConvNet with novel architecture, and thereby
trained end-to-end. This mapping can be viewed as an intelligent initialization of a deep
ConvNet, enabling training even in the face of very limited amounts of training data. We
also demonstrate an approximate mapping back from the refined ConvNet to a second
stacked RF, with improved performance over the original. We experimentally verify that
these mappings outperform stacked RFs for two different applications in computer vision
and biology: Kinect-based body part labeling from depth images, and somite segmenta-
tion in microscopy images of developing zebrafish. ∗

1 Introduction
Deep learning has transformed the field of computer vision, and now rivals human-level
performance in tasks such as image recognition [16] and object detection [9]. These advances
have been fuelled by large labeled data sets, such as ImageNet [25], that can be used to train
deep ConvNets. Once trained, these models serve as generic feature extractors, and can be
applied to a wide range of problems using simple refinement techniques [9]. An example
of this is semantic segmentation by a Fully Convolutional Network that was pre-trained for
image classification on ImageNet [19].

Despite the overwhelming success of the prescribed approach, there are still many spe-
cialized tasks which cannot be easily addressed by refining pre-trained networks, and for
which there does not exist a sufficiently large data set to train a high capacity ConvNet from
scratch. An important example of this is in biomedical imaging, where no AlexNet exists,
and there is often a dearth of publicly available data.

A common strategy when training data is limited, is to use ensemble approaches, such
as Random Forest classifiers (RF). The use of stacked classifiers, such as Auto-context [31],

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

∗Shared first authors
Pages 144.1-144.12

DOI: https://dx.doi.org/10.5244/C.30.144

https://dx.doi.org/10.5244/C.30.144

2 RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET

Figure 1: Overview. Our method (left) and corresponding results (right) for semantic seg-
mentation of somites in microscopy images of developing zebrafish. (1) A stacked RF is
trained to predict dense semantic labels from an input feature stack. (2) The stacked RF is
then mapped to a deep ConvNet and further trained by back-propagation to improve per-
formance. (3) Optionally, the ConvNet is mapped back to a stacked RF with updated pa-
rameters. The new stacked RF performs worse than the ConvNet but requires much less
computation, and is better than the original RF.

creates “deep” classifiers that have been shown to learn contextual information and thereby
improve performance on many tasks such as object-class segmentation [28], facade segmen-
tation [13], and brain segmentation [31]. However, this strategy has the limitation that the
stack of classifiers is trained greedily; in contrast to the end-to-end training of deep Con-
vNets. Thus, there is a need for methods that train stacked classifiers end-to-end. Our work
addresses this issue by exploiting the connection between decision trees (DT) and NNs [27].
Figure 1 depicts our proposed pipeline.

Contributions:
1. We show that a stacked RF with contextual features is a special case of a deep ConvNet

with sparse convolutional kernels.
2. We describe a mapping from a stacked RF to a sparse, deep ConvNet, and utilize

this mapping to initialize the ConvNet from a pre-trained stacked RF. This leads to supe-
rior results on semantic segmentation with limited training samples, compared to alternative
strategies.

3. We describe an approximate mapping of our sparse, deep ConvNet back to a stacked
RF with updated parameters, for more computationally efficient evaluation, e.g., for low
power devices. We show that this improves over the performance of the original stacked RF.

4. Due to our special ConvNet architecture we are able to gain new insights of the
activation pattern of internal layers, with respect to semantic labels. In particular, we observe
that the common smoothing strategy in stacked RFs is naturally learned by our ConvNet.

2 Related Work
Our work relates to (i) global optimization of RF classifiers, (ii) feature learning in stacked
RF models, and (iii) applying ConvNets to the task of semantic segmentation.

Global Optimization of RFs. The limitations of traditional greedy RF construction [2]
have been addressed by numerous works. In [30], the authors learn DTs by the standard
method (see [6] for a detailed description of this method), followed by a process called
“fuzzification”, replacing all threshold split decisions with smooth sigmoid functions, and
re-optimizing the split parameters by back-propagation. In [22], they learn to combine the
predictions from each DT so that the complementary information between multiple trees is
optimally exploited with respect to a final loss function. After training a standard RF, they
retrain the distributions stored in the leaves, and prune the DTs to accomplish compression

RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET 3

and avoid overfitting. However, [22] does not retrain the parameters of the internal split
nodes of individual DTs, whereas [30] does not retrain the combination of trees in the forest.

A related approach is to train an RF, and then map to a shallow NN with two hidden
layers and refine the parameters by back-propagation. This was originally demonstrated
for classification [27, 32], and more recently for regression [1]. This effectively “fuzzifies”
threshold split decisions, and simultaneously enables training with respect to a final loss
function. Hence as opposed to [30] and [22], all model parameters are learned simultane-
ously in an end-to-end fashion. Our work builds upon [27, 32]: We extend their approach
to a deep ConvNet, inspired by the Auto-context algorithm [31], and apply it to semantic
segmentation.

Feature Learning in a RF Framework. Auto-context introduces new contextual fea-
tures during the learning process, and thus is a form of feature learning. Numerous works
have generalized this approach. In Entangled Random Forests (ERFs) [20], spatial depen-
dencies are learned using “entanglement features” in each DT, without the need for stacking.
Geodesic Forests [14] apply image-aware geodesic smoothing to the class distributions, to
generate features for deeper nodes in the DT. However, these approaches are still limited by
greedy parameter optimization.

In a more traditional approach to feature learning, Neural Decision Forests [3] mix RFs
and NNs by using multi-layer perceptrons (MLP) as soft split functions, to jointly tackle
the problem of data representation and discriminative learning. This approach can obtain
superior results with smaller trees, at the cost of more complicated split functions; however,
the MLPs in each split node are trained independently of each other. The authors in [15]
address this limitation by training the entire system end-to-end, and this is the most closely
related to our work; however, they only apply their model to the task of image classification.
This work could be adapted to pixel-wise segmentation using a sliding-window approach;
however, without the use of stacked classifiers their model would not capture contextual
information beyond the input window. Furthermore, our work generates a different ConvNet
architecture with large, sparse convolutional kernels, and interpretable internal layers.

ConvNets for Semantic Segmentation. ConvNets can be applied to semantic segmen-
tation either in a tile-based manner [5], or using “whole-image-at-a-time” processing in a
Fully Convolutional Network (FCN) [19]. A challenge of these approaches is that the built-
in spatial invariance of ConvNets trained for image classification leads to coarse-graining
effects on the output. A variant of FCN called U-Net was recently proposed in [24], and
uses skip layers to combat coarse-graining. In [33], they address coarse-graining by ex-
pressing mean-field inference in a dense CRF as a Recurrent Neural Network (RNN), and
concatenating this RNN behind a FCN, for end-to-end training of all parameters. Notably,
they demonstrate a significant boost in performance on the Pascal VOC 2012 segmentation
benchmark; however, this model is trained on large scale data and has not been applied to
scenarios, such as biomedical images, with limited training examples.

Unsupervised pre-training has been used successfully to leverage smaller labeled training
sets [10, 21, 26]; however, fully supervised training on large data sets still gives higher
performance. A common practice is to train a ConvNet on a large training set, and then fine
tune the parameters on the target data [9]; however, this requires a closely related task with
a large labeled data set, such as ImageNet. Another strategy to address the dependency on
training data, is to expand a small labeled training set through data augmentation [24].

We propose a novel strategy for semantic segmentation with limited training data. Sim-
ilar to [8, 17], we employ supervised pre-training, but in a complementary model, namely
the popular Auto-context model [31]. Our approach avoids coarse-graining by generating a

4 RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET

ConvNet architecture with no striding or pooling layers. Our method achieves a large recep-
tive field with few parameters by using sparse convolutional kernels, similar to [4]; however,
we learn the optimal position of the non-zero kernel element(s) during construction of the RF
stack. There has been recent interest in the use of sparse convolutional kernels for reducing
computation in ConvNets [11, 12, 18], indeed ConvNets are known to be highly redundant
and the number of parameters can be reduced by up to 90% with only a 1% loss in accuracy
[18].

3 Method
In Section 3.1, we describe our main contribution, namely how to map a stack of RFs onto
a deep ConvNet. In Section 3.2, we describe our second contribution, an algorithm for
mapping our deep ConvNet back onto the original RF stack, with updated parameters. Our
contributions build upon the mapping of a RF to a NN with two hidden layers as proposed
in [27, 32]. In the following we briefly review this mapping, adopting the notation of [32]
for consistency.

The architecture of the two layer NN is as follows: The first hidden layer has one neuron,
H1(n), for every split node in the tree (Figure 2b). We use n to denote the split node index.
This neuron fires -/+1 to encode if the input goes left or right at that node in the tree. The
weights in this layer, w f (n),H1(n), are initialized to 1 for the input feature, f (n), used by the
corresponding node in the DT, and 0 otherwise. This can model axis-aligned split functions
with a single non-zero weight per neuron, or oblique split functions with multiple non-zero
weights per neuron. The weights associated with the bias node, bH1(n), store the threshold
for each split node in the RF. A hyperbolic tangent activation function is used to approximate
the binary split function, and finally all weights are multiplied by a global constant that tunes
the sharpness of the split decision.

The second hidden layer has one neuron, H2(l), per leaf node (Figure 2b), and fires 0/1
to encode if the input ends up in this leaf or not. We use l to denote the leaf node index,
and leaf(x) to denote the unique leaf that sample x ends up in for each tree. Each neuron is
connected to all of the split nodes on the path to that leaf, with weights wH1(n),H2(l) equal to
-/+1 depending on whether the leaf is part of the left or right sub-tree of that split node.
The weights to the bias node, bH2(l), store the length of the path. Again, a hyperbolic tangent
activation function is used, and all weights are multiplied by a global constant tuning the
sharpness of its response.

The output layer has one neuron per class. The weights, wH2(l),c, are fully connected
and store the histogram, yl

c, over classes, c, from the respective leaf of the tree (Figure 2b).
There are no bias nodes in this layer, and softmax activation is used to ensure a probabilistic
interpretation. To extend from a tree to a forest, simply connect hidden layer 2 from each
tree directly to the output layer (Figure 2c). The inner product sums the result from each
tree, and the softmax activation normalizes the output.

We now discuss the relationship between RFs with contextual features and ConvNets.
In many applications such as body-pose estimation [22], medical image labeling [20], and
scene labeling [31], contextual information is included in the form of “offset features” that
are selected from within a window defined by a maximum offset. Such an RF can be viewed
as a special case of a ConvNet, with sparse convolutional kernels and no max pooling layers
(Figure 3). The convolutions in hidden layer 1 have width matching the size of the window,
and are very sparse. E.g., it is common to have only a single non-zero element in this
convolution kernel, or in the case of medical imaging, to use average intensity over a smaller

RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET 5

(a) (b) (c)

Figure 2: Mapping from a RF to a NN. (a) A shallow DT. Nodes are labeled to show
mapping to NN. (b) Corresponding NN with two hidden layers. The first hidden layer is
connected to the input layer through weights w f (n),H1(n), where f (n) is the feature used by
split node n. This layer outputs the split decision for each split node of the DT (numbered
0,1,4). The weights wH1(n),H2(l) between the two hidden layers encode the structure of the
tree. In particular, the split nodes along the path to leaf l are connected to H2(l). For example,
leaf node 5 is connected to split nodes 0 and 4, but not split node 1. The second hidden layer
encodes leaf membership for each leaf node (numbered 2,3,5,6). The final weights wH2(l),c

are fully connected and store the votes yl
c for each leaf l and class c. Gray: Input feature

nodes. Blue: Bias nodes. Red: Prediction nodes, p(c|x). (c) NN corresponding to a RF
with two DTs, each with the same architecture as in (a). Note that, while the two DTs have
the same architecture, they use different input features at each split node, and do not share
weights.

offset window [20]. The second layer convolutions are similarly very sparse, with the number
of non-zero elements equal to the depth of the tree.

3.1 Mapping a RF Stack to a Deep ConvNet

A stacked RF consists of multiple RF classifiers in a sequence, such that subsequent RF
classifiers in the stack can use the predictions from the previous RF as input features (see
Figure 4a). Training is done iteratively, from the first to the last RF in the stack (see [31]
for more details). It was noted in the original Auto-context algorithm that it is important
to allow the later RF classifiers to select features, not only from the output of the previous
classifier, but also from the input feature stack. Finally, to capture contextual information,
these features are sampled with a learned offset.

We map this architecture onto a deep ConvNet as follows: each RF is individually
mapped to a ConvNet, and then concatenated such that the layers corresponding to inter-
mediate RF predictions become hidden layers, used as input to the next ConvNet in the
sequence (Figure 4b). We also connect the input feature stack as bias nodes in hidden layers
H3k, k = 1...K−1, and introduce contextual (i.e. offset) features with the sparse convolution
kernels discussed above. Due to the use of these contextual features, individual pixels cannot
be processed independently, but rather the complete image must be run through one level at
a time (similar to the Auto-context algorithm), such that all features are available for the next
level. Finally, we remove the softmax activation from internal layers H3k, k = 1...K−1, and
normalize their output, to match the behaviour of the RF stack. For a K-level RF stack, this
generates a deep ConvNet with 3K−1 hidden layers.

An interesting observation is that addition of trees to the RF and/or growing trees to

6 RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET

(a) (b)

Figure 3: ConvNet architecture of a RF. (a) ConvNet architecture for dense semantic
segmentation, corresponding to a RF with contextual features. The variables are: h - size
of input convolution kernels; F - number of input convolution kernels; w - window size for
offset features; d - number of feature maps in each layer; D - depth of corresponding decision
tree; C - number of classes. (b) An example, where the RF is a single DT with depth D = 3,
and 2 output classes. One pixel is classified in (b), corresponding to the region in (a) with
similar color-coding. The input layer (red) extracts features with a fixed offset (shown by
arrows) and filter type (index into filter stack, shown at bottom left of each node). Activation
values are shown for nodes in hidden layers 1,2 and the output layer. In this example, the
sample ends up in leaf #5. Bias nodes are not shown for simplicity.

a greater depth simply increases the width of the ConvNet, but is always restricted to a
shallow architecture with only two hidden layers. However, stacking RFs naturally increases
the depth of the ConvNet architecture.

(a) (b)

Figure 4: Mapping from a stacked RF to a deep ConvNet. (a) A stacked RF consisting of
two shallow decision trees. The second RF takes as input the original stack of convolutional
filter responses, and the output of the previous RF across the entire window over which
contextual features can be sampled. (b) Corresponding ConvNet with 5 hidden layers. Same
color coding and node labeling as in Figure 2. In this example, the second DT learned to use
filter response x2, the RF output for class 1 at that same pixel (i.e., p1), and the RF output
for class 2 at some different offset pixel, denoted p̄2. Note that p̄2 is not a bias node; it is a
contextual feature and its value depends on weights in previous layers.

RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET 7

3.2 Mapping the Deep ConvNet back to a RF Stack

ConvNets are highly redundant [18] and thus require a lot of additional computation, which
may limit their applications e.g. on low power devices. We explore the possibility of map-
ping our deep ConvNet back to the more computationally efficient architecture of a stacked
RF. Given a ConvNet constructed from a K-level RF stack as described above, the weights
wH3k−2,H3k−1 , k = 1...K manifest the original tree structure. Thus, keeping these weights and
the corresponding biases, bH3k−1 , fixed during training allows the ConvNet to be mapped
back onto the structure of the original RF stack. For a single level stack, the mapping is: (i)
θ(n)=−bH1(n)/w f (n),H1(n), where θ(n) is the threshold for split node n, and (ii) yl

c =wH2(l),c.
We refer to this as “Map Back #1”. When evaluating this RF, a softmax activation function
needs to be applied to the output distribution to mimic inference in the ConvNet. For deeper
stacks, the output of each RF must be post-processed with the corresponding activation func-
tion in the ConvNet, which in this paper is simple class normalization.

The above approach is appropriate if only a single leaf neuron fires in hidden layer
2 for each sample. However, after training by back-propagation, this activation pattern
will likely be distributed, with many neurons contributing to the prediction, and our map-
ping may not make optimal use of the learned parameter refinement. Here, we propose a
strategy to capture the distributed activation of the ConvNet. For input x and class c, we
would ideally like to store in leaf(x) of each DT, the following inner product: yleaf(x)

c =
zx(c) := ∑l ax(H2(l)) ·wH2(l),c, where ax(H2(l)) is the activation of neuron H2(l).

This mapping would elicit the identical output from the RF as from the ConvNet for
input x. However, the activation pattern will vary for different training samples that end up
in the same leaf, so this mapping cannot be satisfied simultaneously for the whole training
set. This results from the fact that DTs store distributions in their leaves that represent a
piecewise-constant function on the input feature space, while the re-trained ConvNet allows
for a non-piecewise-constant function (Supplemental Figure 1). As a compromise, we seek
new vote distributions ŷl

c, for each c, l, to minimise the following error, averaged over the
finite set of training samples, X train.

∑
x∈X train: leaf(x)=l

(
zx(c)− ŷl

c

)2
(1)

Equation 1 can be solved analytically, yielding the following result:

ŷl
c =

1
|{x ∈ X train : leaf(x) = l}| ∑

x∈X train: leaf(x)=l

zx(c) (2)

This is a simple average of zx(c) over all samples that end up in the same leaf of the
corresponding DT. We refer to this as “Map Back #2”. To implement this algorithm in a
stack, we start by determining leaf membership for every sample and every tree in the first
level of the RF stack. We then update the votes according to Equation 2. This is then repeated
for all subsequent levels of the stack. See Algorithm 1 in the Supplemental Materials for
more details. In the trivial case where, for every sample, a single neuron fires with unit
activation in layers H3k−1, k = 1...K, this is equivalent to “Map Back #1”.

8 RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET

4 Results
The forward and backward mappings described above were implemented in Matlab, and
tested on two different applications: Kinect-based body part labeling from depth images,
and somite segmentation in microscopy images of developing zebrafish.

4.1 Kinect Body Part Classification

Experimental Setup. We applied our method to human body part classification from Kinect
depth images, a domain where Random Forests have been highly successful [29]. We use the
recently provided data set in [7], since there is no publicly available data set from the original
paper [29]. It contains 2000 training images, and 500 testing images, each 320x240 pixels,
containing 19 foreground classes and 1 background class (Figure 5(a,b) for an example). We
evaluate the pixel accuracy, averaged over all foreground classes, as was done by [7]. Note
that background is trivially classified.

Training Parameters. We first trained a two-level stacked RF, and then mapped it to a
deep ConvNet with 5 hidden layers, as described in Section 3. We trained the ConvNet using
back-propagation and stochastic gradient descent (SGD) with momentum. SGD training is
applied by passing images through the network one at a time, and computing the gradient
averaged over all pixels (i.e., batch size = 1 image). Thus, we do “whole-image-at-a-time”
training, as in [19]. We trained for 8000 iterations, which takes approximately 10 hours in
our CPU-based Matlab implementation. See Supplemental Materials for training parameters.

Results. With our initial two-level stacked RF, we achieved a pixel accuracy of 0.82,
comparable to the original result of 0.79 [7] (Figure 5(c), Table 1(RF)). After mapping to a
deep ConvNet and re-training, we achieved an accuracy of 0.91, corresponding to an 11%
relative improvement over the RF stack (Figure 5(d), Table 1(ConvNet)). This final result
is comparable to the state-of-the-art result on this data set which aims to compress RFs by
learning a better combination of their constituent trees [22]. They achieve a class-balanced
pixel accuracy of 0.92 over all classes, including the background class, for a model size
of 6.8MB. Our model is smaller, at 3.3MB, due to our use of fewer and shallower trees.
Furthermore, they report that their optimization procedure takes multiple days, compared to
our overnight refinement by back-propagation. However, due to the different error metric,
and their evaluation on a selected subset of pixels, the results are not directly comparable.

We also tried mapping the ConvNet back to the initial stacked RF architecture with up-
dated parameters. We first employed the trivial approach of mapping weights directly onto
votes, similar to what was done in the RF to NN forward mapping; however, this reduced
the Dice score to 0.74 (Table 1(MB1)), worse than the performance of the initial RF. Next
we applied Algorithm 1 (Supplemental Materials), which yielded a final Dice score of 0.85
(Table 1(MB2)). Thus, we achieve a 4% relative improvement of our RF stack, which re-
tains its exact tree structure, by mapping to a deep ConvNet, training all weights by back-
propagation, and mapping back to the original RF stack with updated threshold and leaf
distributions. However, note that the performance of the final RF is lower than the ConvNet,
due to the approximate nature of the mapping.

Insights. The architecture of the deep ConvNet preserves the intermediate prediction
layers of the RF stack, which generates one image for each class at the same resolution as
the input image. This enables us to gain insights on internal ConvNet layers. However,
due to back-propagation training, these images no longer represent probability distributions.
In particular, the pixel values can now be negative. We visualized the internal layers to

RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET 9

(a) (b) (c) (d) (e)

Figure 5: Example result of Kinect
body part classification. (a) Depth im-
age. (b) Ground truth labels. (c) Result
of stacked RF. (d) Result of RF-initialized
ConvNet, after re-training. The accuracy
for this test image increases from 0.88 to
0.94 on foreground classes. (e) Crop of
hands for GT, RF and ConvNet, from top
to bottom.

better understand how they changed during additional training in the ConvNet (Figure 6(a)).
Interestingly, we noticed that compared to the stacked RF, the internal activation layers in
the ConvNet were less thresholded, and fired on adjacent body parts. A common strategy in
stacked classification is to introduce smoothing between the layers of the stack (e.g. [13, 14,
23]), and it appears that a similar strategy is naturally learned by the deep ConvNet.

4.2 Zebrafish Somite Classification
Experimental Setup. We next applied our method to semantic segmentation of 21 somites1

and 1 background class in a data set of 32 images (800x950 pixels) of developing zebrafish.
Experts in biology manually created ground truth segmentations of these images2. The data
set was split into 16 images for training and 16 images for test. Two additional training
images were generated from each original training image by random rotation of the originals.
We evaluated the resulting segmentation by means of the class-balanced Dice score.

Training Parameters. We first trained a three-level stacked RF, and then mapped it to a
deep ConvNet with 8 hidden layers. The ConvNet was initialized and trained exactly as for
the Kinect example; however, with different hyper-parameters (Supplemental Materials).

Results. Segmentation of the test data by means of the resulting three-level stacked RF
achieved an average Dice score of 0.60 (Supplemental Figure 2(c) and Table 1(RF)). The
RF-initialized ConvNet achieved a Dice score of 0.66 after re-training, corresponding to a
10% relative improvement (Supplemental Figure 2(d) and Table 1(ConvNet)). This result
matches previous State-of-the-Art results on this data set [23], but without the need for time-
consuming model-based inference. It’s interesting to note that training a deep ConvNet with
8 hidden layers using hyperbolic tangent activation functions is typically extremely difficult,
but works well here, likely due to the good initialization of the network. We discuss insights
on the internal activation layers of this network in Figure 6(b). We also mapped the ConvNet
back to the initial stacked RF architecture with updated parameters. MB#1 yielded a Dice
score of 0.59, and MB#2 a final score of 0.63, a 5% improvement from the original RF model
(Table 1 and Supplemental Figure 2).

We also considered the task of training the same ConvNet architecture from a random
initialization (Supplemental Materials). We trained the network first maintaining the sparsity
of the weight layers, and then fully connecting the layers corresponding to tree connectivity;
however, these yielded final Dice scores of only 0.04 and 0.15, respectively. Finally, we
compared our method with the Fully Convolutional Network (FCN), a state-of-the-art model
for semantic segmentation [19]. The model was downloaded from Caffe’s Model Zoo3, and

1Somites are the metameric units that give rise to muscle and bone, including vertebrae.
2The data is publicly available at http://tinyurl.com/zyvc2lu
3https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn

10 RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET

RF ConvNet MB1 MB2
Kinect 0.82 0.91 0.74 0.85
Zebrafish 0.60 0.66 0.59 0.63

Table 1: Comparison of dense semantic labeling. Dice score is reported for the initial
stacked RF (RF), RF-initialized and re-trained ConvNet (ConvNet), and after mapping the
ConvNet back to a stacked RF using Map Back #1 and #2 (MB1 and MB2, respectively. See
Section 3.2 for details). Higher Dice score corresponds to a more accurate segmentation.

(a) (b)

Figure 6: Visualization of internal activation layers. We visualize the probability maps
output by the intermediate output layers of the RF stack (e.g., Level 1,2 Output), and the
activation maps from the corresponding hidden layers of the ConvNet (e.g., H3, H6) for (a)
Kinect body parts, and (b) zebrafish somites. Notice that the activation from the ConvNet ap-
pears smoothed along the direction of the foreground classes compared to the noisier output
of the stacked RF. Best viewed in colour.

initialized with weights fine-tuned from the ILSVRC-trained VGG-16 model. This model
(and others in the Caffe Zoo) take as input an RGB image, and are not directly amenable
to grayscale microscopy images. We created 3-channel images by duplicating the grayscale
image, and fine-tuned the network for approximately 1 day on a single Nvidia K-40 GPU
(Supplemental Materials). The FCN network failed to train successfully, achieving a Dice
score of only 0.18, due either to incompatibility of this pre-trained model with 1-channel
images, the significant difference in task domain, and/or the limited size of the training set.

5 Conclusions and Future Work
We have exploited a new mapping between stacked RFs and deep ConvNets, and demon-
strated the benefits of this mapping for semantic segmentation with limited training data.
There are many exciting avenues for future research. Our ConvNet architecture produces
internal activation images, one for each class, that are directly interpretable. Thus, it is
straightforward to incorporate differentiable model layers, e.g., dense convolutions, that op-
erate on the output of these layers. In the midterm, we are excited about extending our
architecture and also merging it with existing ConvNet architectures. E.g., we would like
to test whether our sparse ConvNet architecture can be trained from scratch on small data
sets, by incorporating standard ConvNet tricks such as drop-out regularization and ReLU
activations. We are also interested to test whether additional ConvNet architectures, such
as a smaller FCN model with single channel input, can be trained on our data. Finally, we
would like to compare the performance of our model directly to the recent model from [15],
and explore whether our Auto-context ConvNet can also be incorporated after the feature
extraction layers in a traditional ConvNet.

RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET 11

References
[1] Gérard Biau, Erwan Scornet, and Johannes Welbl. Neural random forests. arXiv.org, 2016.

[2] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[3] Samuel Rota Bulò and Peter Kontschieder. Neural decision forests for semantic image labelling.
In CVPR, 2014.

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan Yuille. Se-
mantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR,
2015.

[5] Dan Ciresan, Alessandro Giusti, Luca M Gambardella, and Jürgen Schmidhuber. Deep Neural
Networks Segment Neuronal Membranes in Electron Microscopy Images. In NIPS, 2012.

[6] Antonio Criminisi and Jamie Shotton. Decision Forests for Computer Vision and Medical Image
Analysis. Springer, 2013.

[7] Misha Denil, David Matheson, and Nando de Freitas. Consistency of online random forests.
Journal of Machine Learning Research, 28(3):1256–1264, 2013.

[8] Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In NIPS,
1989.

[9] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In CVPR, 2014.

[10] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18(7):1527–1554, 2006.

[11] Yani Ioannou, Duncan Roberston, Jamie Shotton, Roberto Cipolla, and Antonio Criminisi. Train-
ing convolutional neural networks with low-rank filters for efficient image classification. In ICLR,
2016.

[12] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural net-
works with low rank expansions. In BMVC, 2014.

[13] Varun Jampani, Raghudeep Gadde, and Peter Gehler. Efficient facade segmentation using auto-
context. In WACV, 2015.

[14] Peter Kontschieder, Pushmeet Kohli, Jamie Shotton, and Antonio Criminisi. Geof: Geodesic
forests for learning coupled predictors. In CVPR, 2013.

[15] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In ICCV, 2015.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

[17] Régis Lengellé and Thierry Denoeux. Training mlps layer by layer using an objective function
for internal representations. Neural Networks, 9(1):83–97, 1996.

[18] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse Con-
volutional Neural Networks. In CVPR, 2015.

[19] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015.

12 RICHMOND, KAINMUELLER, et al.: MAPPING AUTO-CONTEXT TO DEEP CONVNET

[20] Albert Montillo, J Tu, Jamie Shotton, John Winn, Juan Eugenio Iglesias, Dimitris N Metaxas, and
Antonio Criminisi. Entanglement and differentiable information gain maximization. In Decision
Forests for Computer Vision and Medical Image Analysis, 2013.

[21] Marc Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun. Unsupervised learning
of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.

[22] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. Global refinement of random forest. In
CVPR, 2015.

[23] David L Richmond, Dagmar Kainmueller, Ben Glocker, Carsten Rother, and Eugene W My-
ers. Uncertainty-driven forest predictors for vertebra localization and segmentation. In MICCAI,
2015.

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In MICCAI, 2015.

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[26] Pierre Sermanet, Koray Kavukcuoglu, Sumith Chintala, and Yann LeCun. Pedestrian detection
with unsupervised multi-stage feature learning. In CVPR, 2013.

[27] Ishwar Sethi. Entropy nets: from decision trees to neural networks. Proceedings of the IEEE, 78
(10):1605–1613, 1990.

[28] Jamie Shotton, Matthew Johnson, and Roberto Cipolla. Semantic texton forests for image cate-
gorization and segmentation. In CVPR, 2008.

[29] Jamie Shotton, Andrew W. Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore,
Alex Kipman, and Andrew Blake. Real-time human pose recognition in parts from single depth
images. In CVPR, 2011.

[30] Alberto Suarez and James Lutsko. Globally optimal fuzzy decision trees for classification and
regression. PAMI, 21(12):1297–1311, 1999.

[31] Zhuowen Tu and Xiang Bai. Auto-context and its application to high-level vision tasks and 3d
brain image segmentation. PAMI, 32(10):1744–1757, 2010.

[32] Johannes Welbl. Casting random forests as artificial neural networks (and profiting from it). In
GCPR, 2014.

[33] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su,
Dalong Du, Chang Huang, and Philip Torr. Conditional random fields as recurrent neural net-
works. In ICCV, 2015.

