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Abstract

In real-world classification problems, nuisance variables can cause wild variability in
the data. Nuisance corresponds for example to geometric distortions of the image, occlu-
sions, illumination changes or any other deformations that do not alter the ground truth
label of the image. It is therefore crucial that designed classifiers are robust to nuisance
variables, especially when these are deployed in real and possibly hostile environments.
We propose in this paper a probabilistic framework for efficiently estimating the robust-
ness of state-of-the-art classifiers and sampling problematic samples from the nuisance
space. This allows us to visualize and understand the regions of the nuisance space
that cause misclassification, in the perspective of improving robustness. Our probabilis-
tic framework is applicable to arbitrary classifiers and potentially high-dimensional and
complex nuisance spaces. We illustrate the proposed approach on several classification
problems and compare classifiers in terms of their robustness to nuisances. Moreover,
using our sampling technique, we visualize problematic regions in the nuisance space
and infer insights into the weaknesses of classifiers as well as the features used in clas-
sification (e.g., in face recognition). We believe the proposed analysis tools represent
an important step towards understanding large modern classification architectures and
building architectures with better robustness to nuisance.

1 Introduction
Image classification has recently witnessed key advances in performance on many challeng-
ing benchmarks [10, 16, 17, 20]. Despite these advances, classification systems are however
often regarded as black box models that lead only to limited understanding of the weak-
nesses of a given model. We focus here on a key property of classifiers, that is their ability
to factor out nuisance variables. Nuisance accounts for variability that has no effect on
the result of the task, and should be ideally factored out of the classification system. For
example, nuisance may correspond to changes in illumination, occlusion or standard local
geometric transformation of the image. It is well known that humans are excellent at remov-
ing irrelevant information in a visual task, such as recognizing an object independently of
its viewpoint or with occluding objects, while it is unclear to which extent state-of-the-art
classifiers can factor out such complex nuisances. To have a better understanding of how
modern classifiers deal with nuisance variables, it becomes crucial to develop generic meth-
ods to measure and visualize the effect of nuisance on classifiers.
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We propose in this paper a general probabilistic framework for assessing and analyzing
the robustness of classifiers to nuisance factors. The outcomes of the proposed framework
are two-fold: the estimation of the robustness of classifiers to arbitrary nuisances and the
sampling from problematic regions in the nuisance space for visualizing and possibly im-
proving the robustness to nuisances. Specifically, we first propose a formal definition of the
average robustness to nuisance, and provide a provably efficient Monte-Carlo estimate. In
a second step, we focus on problematic regions of the nuisance space, where the classifier
outputs low confidence scores for highly probable nuisance values, and propose a MCMC
sampling mechanism to quickly reach such regions of the nuisance space. This allows us to
visualize problematic samples for a given classifier, and gain further insights into regions of
the nuisance space which cause misclassification. Such a sampling mechanism can also po-
tentially be very valuable to improve the robustness of classifiers. Our framework is generic
and can be applied to any parametrizable nuisance space and classifier. To illustrate the
proposed framework, we apply it to several classification architectures, three classification
datasets and three nuisance spaces. We quantify in particular the effect of data augmenta-
tion, dropout, spatial transformer network layers [8] on the robustness of CNNs, and compare
state-of-the-art deep neural networks trained on natural image datasets in terms of their ro-
bustness to standard nuisances. Our results provide insights into the important features used
by the classifier to distinguish between classes, through the visualization of the nuisances
that transform an image to a different class. Our experiments also demonstrate that state-of-
the-art classifiers are only mildly robust to standard nuisances, and that more effort should
therefore be spent to improve this robustness.

Following the major successes of deep visual representations, several empirical [1, 4, 9,
11] studies, theoretical analysis [18] and visualization tools [3, 12] have been proposed to
achieve a better understanding of the geometric properties and viewpoint invariance of deep
visual representations. Unfortunately, these analysis works are either restricted to specific
nuisance spaces (e.g., low-dimensional geometric transformations or mathematical groups),
particular classification methods (deep convolutional neural networks), or do not offer mech-
anisms to visualize and sample from problematic nuisance regions. Other forms of robust-
ness to perturbations have recently been analyzed in [5, 15, 19], where minimal additive per-
turbations that are sufficient to change the label of the classifier are sought. This worst-case
robustness definition has later been applied to geometric transformations to assess the invari-
ance of classifiers to rigid transformations [4]. The sampling paradigm we develop in this
paper significantly departs from these approaches, where we explore the space of nuisance
variables that cause misclassification, rather than focusing only on the minimal perturbation
or geometric transformation. Finally, it should be noted that new classification architectures
have been proposed with the goal of improving the robustness to various deformations in
the data [7, 8, 13]. In that context, we believe that our framework can readily be used in
order to quantitatively evaluate these classifiers in terms of their robustness, and more im-
portantly, contribute to improving the robustness of classifiers to nuisances by leveraging the
proposed sampling mechanism. The code of the algorithms will be made available online on
the project webpage.1

1https://sites.google.com/site/classifiernuisance/



FAWZI, FROSSARD: MEASURING THE EFFECT OF NUISANCE VARIABLES 3

2 Measuring the effect of nuisance variables

2.1 Definitions

We consider an arbitrary classifier that is provided through its conditional distribution pcl(c|x),
which represents the probability that an image x is classified as c by the classifier.2 In neural
network architectures, this discrete conditional distribution pcl(·|x) corresponds to the prob-
ability vector that can be read at the last layer of the neural network (i.e., after the softmax
layer), after a feedforward pass of the input x.

Let T be a set of nuisances. The set T can for example represent the set of affine trans-
formations, diffeomorphisms, or occlusions that might corrupt the data. For a particular
element in the nuisance set θ ∈ T , we define Tθ x to be the image x transformed by θ . We
adopt a Bayesian framework and equip the nuisance space T with a prior probability distri-
bution pT (θ) that captures our region of interest in the nuisance space. For example, when
T denotes the occlusion nuisance set, pT (θ) might take large values for small occlusions
(covering small parts of the image), and smaller values for large occlusions. In some cases,
the prior distribution pT (θ) might depend on the image; hence, for the sake of generality,
we denote our prior distribution by pT (θ |x).

We now define a quantity that allows us to measure the robustness of a classifier with
respect to a nuisance set T . Consider an image x with ground truth label `(x). The quantity
pcl(`(x)|x) reflects the confidence that x is classified as `(x), and therefore should be large
when the classifier is accurate. For a given nuisance θ ∈ T , the expression pcl(`(x)|θ ,x) :=
pcl(`(x)|Tθ x) gives the probability that the transformed image Tθ x is also classified as the
ground truth `(x). For a classifier to be robust, this quantity should be large for typical θ .
We define the robustness µT (x) as the average of this quantity, weighted by pT (θ |x):

µT (x) :=
∫

θ
pcl(`(x)|θ ,x)pT (θ |x)dθ = E

θ∼pT (·|x)
(pcl(`(x)|θ ,x)).

Note that our quantity µT (x) strongly depends on the prior distribution pT (θ |x); a classifier
with a large µT (x) will have high classification confidence in highly probable regions of
the nuisance space, but µT (x) is only mildly affected by the classifier confidence in low
probability regions of T . In a Bayesian inference setting, µT (x) is called the marginalized
likelihood, where the likelihood term pcl(`(x)|θ ,x) is marginalized over pT .

Given a data distribution pd , we define the global robustness to nuisance variables in T
as the average of µT (x), i.e.,

ρT :=
∫

x
µT (x)pd(x)dx = E

x∼pd

(
E

θ∼pT (·|x)
[pcl(`(x)|θ ,x)]

)

It should be noted that the quantities µT and ρT are bounded between 0 and 1. The global
robustness ρT measures the average confidence that typical images perturbed with nuisances
chosen according to the prior distribution pT (θ |x) are classified as `(x).

2Unlike many works that assume that the mapping from the input x to the label is deterministic, it is assumed
here to be a probabilistic mapping defined by the conditional distribution pcl(c|x). The probabilistic definition is
more general as the deterministic case corresponds to pcl(c|x) = 1 for the correct label, and 0 otherwise.
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2.2 Estimation of the global robustness score
The global robustness measure ρT is a continuous quantity that involves an integration over
the image space, as well as the nuisance space. We estimate these quantities using a Monte
Carlo approximation method, and define the empirical quantities µ̂T and ρ̂T as

µ̂T (x) =
1
N

N

∑
i=1

pcl(`(x)|θi,x), with θi
iid∼ pT (θ |x), (1)

ρ̂T =
1
M

M

∑
j=1

µ̂T (x j), with x j
iid∼ pd. (2)

µT (x) is approximated by the average of the likelihood pcl(`(x)|θi,x) over iid samples gen-
erated from the prior distribution pT (θ |x). The global robustness measure is then naturally
defined as the empirical average of µ̂T (x j), over iid samples from the data distribution.

The computation of Eq. (1, 2) involves the transformation and classification of NM
samples. For computational purposes, it is therefore crucial that the empirical quantities
approximate the true quantities while keeping a small number of samples. The following
result derives theoretical guarantees on the approximation error with respect to the number
of samples N and M.

Theorem 1. Let t > 0, and δ ∈ (0,1). We have |ρ̂T −ρT | ≤ t with probability exceeding
1− δ as long as M ≥ ln(2/δ )

2t2 . Moreover, when the prior distributions are data-independent

(i.e., pT (θ |x) = pT (θ)), the above condition becomes NM ≥ ln(2/δ )
2t2 .

The proof of the theorem, which follows from the concentration of measure of bounded
random variables, is deferred to the supplementary material due to space constraints.

For prior distributions on nuisance spaces that are independent of the datapoint x, the
above result shows that, by choosing N and M in the order of 100, one can obtain very ac-
curate estimates for ρ̂T . When the nuisance prior is data-dependent, the worst-case result
becomes independent of N, and one needs more samples to derive accurate estimates. In
many cases of interest however, the independent case practically applies as the prior distri-
bution does not significantly differ for different images. It should finally be noted that the
bounds in Theorem 1 do not depend on the dimension of the nuisance space; this shows that
the approximate quantity ρ̂T can be very accurate (for moderately large N and M) even for
high dimensional nuisance spaces.

2.3 Estimation of the problematic nuisances
While ρT measures the average likelihood of the classifier (i.e., confidence of correct clas-
sification, when nuisance samples are drawn from the prior distribution), it is also crucial
to visualize and understand the problematic regions of the nuisance space where the clas-
sifier has low confidence on transformed images. The problematic regions of the nuisance
space are mathematically described by the posterior distribution pcl(θ |`(x),x), where we
define pcl(`(x)|θ ,x) = 1− pcl(`(x)|θ ,x) to be the probability that Tθ x is not classified as
`(x). Sampling from this posterior distribution allows us to “diagnose” the set of nuisance
parameters that can cause classification errors. Using the Bayes rule, the posterior dis-
tribution can be written as the normalized product of the likelihood and prior distribution
pcl(θ |`(x),x) = 1

Z pcl(`(x)|θ ,x)pT (θ |x), with Z the normalizing constant. It should be noted
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Algorithm 1 Metropolis algorithm for sampling from pcl(θ |`(x),x)
Initialization: Start with a randomly initialized sample in the nuisance set θ (0) ∈ T .
For each iteration s of the random walk on the nuisance space T , do:

Draw a sample θ ′ ∼ q(θ |θ (s)).

Let paccept = min
(

1, pcl(`(x)|θ ′,x)pT (θ ′|x)q(θ (s)|θ ′)
pcl(`(x)|θ (s),x)pT (θ (s)|x)q(θ ′|θ (s))

)
.

Generate a random uniform sample in u ∈ [0,1].
If u≤ paccept, θ (s+1)← θ ′; otherwise, θ (s+1)← θ (s).

that this posterior distribution is typically a complex high dimensional distribution, where
specialized sampling algorithms do not apply.

To sample from this posterior distribution, we adopt here the celebrated Metropolis
MCMC method for sampling from high dimensional distributions [14]. The sample val-
ues are produced iteratively, where the distribution of the next sample depends only on the
current sample value (hence making the samples sequence a Markov Chain). At each it-
eration, the algorithm picks a candidate for the next sample by sampling from a proposal
distribution q, which guides the exploration of the nuisance space T . Then, with some prob-
ability paccept, the candidate is either accepted, in which case the candidate value is used in
the next iteration, or rejected. The acceptance probability is controlled by the ratio between
the probability of the posterior distribution at the candidate sample to that of the current
sample. The algorithm is summarized in Algorithm 1.

Figure 1: Example map of the (un-
normalized) posterior distribution
pcl(θ |`(x),x) when T = 2d translations.
We overlay samples obtained using the
Metropolis MCMC method.

In practice, we set the proposal distri-
bution q(·|θ) ∼ N (θ ,σ2

propI). It should be
noted that the above algorithm can be ap-
plied to any parametrizable nuisance space
T , and any prior distribution pT (po-
tentially complex prior distributions where
sampling is difficult) in order to find prob-
lematic samples of the nuisance space. Fig.
1 illustrates the samples drawn using the
Metropolis algorithm when T is the set of
2D translations, and the nuisance space is
equipped with a Gaussian prior centered at
0. An arbitrary digit image together with a
baseline classifier was used for the sake of
this illustrative example. It can be seen that
samples obtained with Metropolis confine
to highly probable regions of the nuisance
space (these correspond to nuisance param-
eters with low classification confidence). In particular, it should be noted that the Metropolis
method relying on a Markov Chain random walk for sampling is much more efficient than
the standard approach where independent samples are drawn from pT (θ |x), and accepted
or rejected depending on the values of their likelihood. This Metropolis method is therefore
particularly suited to our framework, as it can efficiently sample “problematic samples”, even
if µT (x)≈ 1.
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Model Test error (%) ρ̂T (α = 100) ρ̂T (α = 50) ρ̂T (α = 10)
CNN-1 1.26 0.90 0.76 0.30
+ Dropout 0.88 0.90 0.77 0.31
+ DA 1.04 0.93 0.85 0.44
+ STN 0.93 0.96 0.90 0.52
CNN-2 1.16 0.94 0.83 0.36
+ Dropout 0.68 0.93 0.82 0.37
+ DA 1.09 0.94 0.87 0.48
+ STN 0.79 0.96 0.90 0.53

Table 1: Robustness to affine transformations of several networks on the MNIST dataset.
Each network is trained for 50 epochs.

3 Experimental evaluation

3.1 MNIST handwritten digits
We evaluate in this section different classifiers in terms of their robustness to the set T of
affine transformations. We parametrize the elements in T with vectors θ ∈ R6 representing
the column-reshaped 2× 3 standard matrix representations of affine transformations. We
consider a Gaussian prior distribution on T given by pT =N (1,Σ), where 1 is the identity
affine transformation, and Σ ∈ R6×6 is a covariance matrix that penalizes large changes in
the appearance of the image. Using differential geometric considerations that we defer to the
supplementary material due to space constraints, we set Σ = (αG)−1, where α is a parameter
that controls the magnitude of the transformation (lower α imply larger transformations), and
G denotes a Riemannian metric at 1 of the manifold T . We also refer to the supplementary
material for visualizations of the transformed versions of arbitrary MNIST images, with
transformations drawn from the prior distribution using different values of α .

We consider two baseline CNN architectures on the MNIST task, CNN-1 and CNN-2,
of respectively 1 and 2 hidden layers. We then consider the following modifications of these
baseline neural networks:

• Dropout regularization: We use a dropout regularization (with probability p = 0.5)
at the last fully connected layer of the network,

• Data Augmentation (DA): At the training stage, we apply a small random translation
to the samples with probability 0.1. In other words, we randomly translate 10% of the
samples at the training stage.

• Spatial Transformer Network (STN) [8]: We use a model where the localization
network is a two layer CNN which operates on the image input. The output from the
localization network is a 6 dimensional vector specifying the parameters of the affine
transformation. This network is trained with data augmentation.

Dropout, DA and STN are often used in order to improve the classification performance.
The goal here is to see the effect of these techniques on the robustness to nuisance factors.

Table 1 reports the affine robustness ρ̂T with N = M = 1000 for the different networks
for three transformation regimes (mild, medium and severe transformations respectively ob-
tained by setting α = 100,50,10). By comparing CNN-1 and CNN-2, it can be seen that
increasing the number of layers leads to a better affine invariance of the model. This re-
sult is in line with the conclusions of [4] showing that an increase in the number of layers
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Figure 2: Samples drawn from the posterior distribution p(θ |`(x),x) with α = 100. On
the left, the original image, and then the transformed images with nuisances sampled from
the posterior distribution for the CNN-2 with Spatial Transformer Network. The estimated
label by the classifier of each transformed image is shown on top of each image. All shown
images are misclassified by the classifier.

of a deep convolutional network leads to improved robustness to similarity transformations.
While dropout regularization leads to significant improvement in test accuracy, it has barely
any effect on the robustness of the classifier to affine transformations. This shows that ro-
bustness and test accuracy capture two different properties of the classifier. In fact, while the
robustness property measures the effect of nuisance variables that might occur in real-world
applications on the classification function, the test set usually contains a restricted set of im-
ages following the same distribution as the training set. Conversely, data augmentation (with
translated samples) has led in this example to a decrease in the test accuracy, while boosting
the robustness to transformations. Moreover, the addition of STN layers also improves the
robustness of classifiers to transformations in the data.

Among the tested classifiers, CNN-2-STN has the maximum robustness for all param-
eters α , with an robustness score larger than 0.9 for mild and medium transformations
(α = 100,50). In other words, the classifier correctly classifies transformed samples with
confidence surpassing 90%. Nevertheless, despite these large average scores, this same net-
work can wrongly classify images that are however quite easily identifiable by a human
observer. To see this, we show in Fig. 2 transformed images with samples drawn from
the posterior distribution pcl(θ |`(x),x) using the Metropolis algorithm.3 Quite interestingly,
these samples have a large variation, thereby showing multiple “flaws” of the classifier. For
example, relatively small transformations of a digit 2 can cause it to be a 7, 8 or 3. This
shows the existence of many “directions” that potentially cause the classifier to misclassify.

3.2 Natural images classification and face recognition

We now conduct experiments on deep neural networks that are trained on the ImageNet
challenge dataset. Specifically, we consider 4 different pre-trained networks: VGG-CNN-
S [2], VGG-16, VGG-19 [17], and GoogLeNet [20]. We evaluate the robustness of these
networks to piecewise affine transformations. Specifically, the image is divided into cells,
and each cell undergoes a different affine transformation. We parametrize the transforma-
tions using motion vectors defined for regularly spaced control points in the image. More
precisely, a transformation is parametrized by a set of motion vectors stacked in an array
V ∈ R2×L, where L defines the number of control points. We then define a prior distribution

3We post-processed the samples obtained using Metropolis (section 2.3) by keeping only the samples having a
label different than `(x). The depicted samples are randomly chosen from this set.
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pT =N (02L,Σ), with a covariance matrix Σ whose correlations decay with the distance be-
tween control points, and 02L denotes the zero motion vector. This distribution, which forces
nearby control points to have similar motion vectors, incorporates a smoothness constraint
on the set of transformations, and results in having well-behaved and natural transformations.
It should be noted that [6] defined a similar prior distribution on motion fields in a different
context. We refer to the supplemental material for the illustration of images transformed
with nuisance parameters sampled from the introduced prior distribution.

We report the robustness measures ρ̂T of the different networks in Table 2, for M = 200
and N = 100. It can be noted that VGG-CNN-S is slightly worse than other networks in
terms of robustness to piecewise affine transformations. This confirms once again the result
highlighted in the previous section, namely that depth improves the robustness to nuisance
factors (in particular piecewise affine transformations), as VGG-16, 19 and GoogLeNet con-
tain substantially more layers than VGG-CNN-S. The overall scores shown in Table 2 show
however that these state-of-the-art networks correctly classify samples with confidence lower
than 70%, for sufficiently small piecewise affine transformations of the data.

VGG-CNN-S VGG-16 VGG-19 GoogLeNet
0.62 0.68 0.68 0.67

Table 2: Robustness to piecewise affine transf. of different networks trained on ImageNet

We visualize images with nuisances sampled from the posterior pcl(θ |`(x),x) in Fig. 3
for the different networks. For some examples, a “natural” transformation of the image leads
to a label change: observe that the “Gyromitra” is indeed transformed to be visually similar
to an image representing a “hen”. These examples provide insights into the concepts that
the deep network uses to discriminate between the classes. In particular, observe that the re-
quired nuisance parameter θ to transform a “white wolf” onto an “arctic fox” or “Samoyed”
is rather intuitive for a human. In particular, note that the deep network heavily relies on
the deformation of the “nose” cue in order to change the estimated label; this shows that
the deep network uses this cue in order to distinguish between these neighbouring classes. It
should be noted however that for some images, relatively small transformations are sufficient
to change the estimated class to labels that are very different from a human perspective (e.g.,
lampshade → sea slug, necklace, ...). This shows deficiencies in the concepts learned by
these classifiers, and that the context of the image is probably not sufficiently used to infer
the label (e.g., the context of a scene representing a lamp shade is very different from sea
slug). In fact, while it is possible to modify the geometric aspect of an object (e.g., lamp-
shade) using a nuisance transformation from T , the overall scene context (characterized by
the shadings, neighbouring objects, etc...) is much more difficult to alter and should ideally
be detected by the classifier to achieve robustness.

We finally consider a face recognition application, where we consider the very recent
VGG-Face classifier from [16], and measure the robustness of this classifier to simple occlu-
sions. Specifically, we consider a nuisance set T where b occlusion rectangles corrupt the
images: any pixel belonging to one of the rectangles is “erased” and set to zero. We consider
a prior probability distribution on this nuisance space that penalizes the total area of occluded
pixels. Specifically, we set pT (θ) ∝ exp

(
−Op/σ2

)
, where Op is the number of occluded

pixels by the b rectangles, and θ ∈R4b is a parametrization of the state where each rectangle
is parametrized with 4 scalars (upper left and lower right point). In the experiments, we set
σ = 2000, b = 3. For the Metropolis algorithm, we use a Gaussian proposal with standard
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VGG-CNN-S VGG-16

Goldfinch GoldfinchBee eater Goldfinch

VGG-19 GoogleNet

Goldfinch

Gyromitra HenHen CockHen

Kite Vulture Vulture Vulture Vulture

White wolf Arctic fox Samoyed Arctic fox Samoyed

Lampshade Sea slug Necklace Soap dispenser Goblet

Original image

Figure 3: Robustness of networks trained on ImageNet challenge to piecewise affine trans-
formations. The left column represents the original image, and the remaining columns show
transformed images sampled from the posterior distribution. On top of each image, we dis-
play the label estimated by the classifier. The post-processing step of footnote 3 was applied.

deviation σprop = 5, and set the number of iterations to 1000. The samples are shown in Fig.
4. Interestingly, it can be seen that with relatively small occluding boxes, one can change the
estimated label of the classifier. More surprising, these simple occlusions can cause trivial
errors in the estimated label (e.g., Aamir Khan→ Craig Robinson, or Daniel Craig→ Anna
Gunn). This lack of robustness is specifically problematic in a face recognition system as
it can be exploited by intruders for fraudulous identification in systems using face recogni-
tion. The proposed sampling tool is important to assess the robustness to such nuisances,
and reveal the weaknesses of such classifiers before their deployment in possibly hostile en-
vironments. Moreover, similarly to the visualization in Fig. 3, one can infer insights on the
features used in the face recognition. Specifically, we observed that in many cases, the clas-
sifier changes label by adding a relatively small occluding box on the person’s nose, which
suggests that this represents an important feature in this automatic face recognition system.
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Figure 4: Robustness of VGG-Faces classifier to artificial occlusion. Left column: original
image, with correct label. Columns 2 to 4 are samples from the posterior distribution. On
top of each image, we indicate the estimated label. The post-processing step in footnote 3
was applied to choose the samples for visualization.

4 Discussion
We proposed in this paper a simple and generic probabilistic framework for measuring the
average robustness to nuisance variables, as well as for sampling problematic nuisance vari-
ables. Our framework can deal with any type of parametrizable nuisance factors, as long as
a prior distribution that defines the region of interest on this space is defined. The proposed
tool permits to generate samples that represent “weak points” of the classifier. We expect that
this framework will be used in applications where robustness to (possibly hostile) nuisance
perturbations is essential (e.g., security applications). The proposed approach can also be
used to derive insights on the features used for classification. Finally, we believe the current
work provides opportunity to further improve the robustness of classifiers, as the samples
revealing the “weak points” of the classifier can potentially be used to re-train the classifier.
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