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In real-world classification problems, nuisance can cause wild variability
in the data. Nuisance corresponds for example to geometric distortions
of the image, occlusions, illumination changes or any other deformations
that do not alter the ground truth label of the image. It is therefore crucial
that designed classifiers are robust to nuisance variables, especially when
these are deployed in real and possibly hostile environments. We pro-
pose a probabilistic framework for efficiently estimating the robustness
of state-of-the-art classifiers and sampling problematic samples from the
nuisance space. This allows us to visualize and understand the regions
of the nuisance space that cause misclassification, in the perspective of
improving robustness. Our probabilistic framework is applicable to arbi-
trary classifiers and potentially high-dimensional and complex nuisance
spaces.

Ingredients.
Classifier: We consider an arbitrary classifier that is provided through its
conditional distribution pcl(c|x), which represents the probability that an
image x is classified as c by the classifier.
Nuisance: Let T be the set of nuisances, and let pT (θ) denote a prior
probability distribution on T that captures our region of interest in the
nuisance space. For example, when T denotes the occlusion nuisance set,
pT (θ) might take large values for small occlusions (covering small parts
of the image), and smaller values for large occlusions.

Measuring the robustness to nuisance.
We define the robustness µT (x) as the average confidence of the classifier
on the transformed samples:

µT (x) := E
θ∼pT

[pcl(`(x)|Tθ x)] , (1)

where `(x) is the ground truth label of x, Tθ x is the image x transformed
by θ .
Given a data distribution pd , we define the global robustness to nuisance
variables in T as the average of µT (x), i.e.,

ρT := E
x∼pd

[µT (x)] . (2)

Estimation of the average robustness.
Monte Carlo approximation.

µ̂T (x) =
1
N

N

∑
i=1

pcl(`(x)|Tθi x), with θi
iid∼ pT , (3)

ρ̂T =
1
M

M

∑
j=1

µ̂T (x j), with x j
iid∼ pd. (4)

How many samples are needed to have a good approximation of ρT ?

If NM ≥ ln(2/δ )

2t2 , then P(|ρ̂T −ρT | ≤ t)≥ 1−δ .

Sampling from the problematic region.
While ρT measures the average likelihood of the classifier, it is also cru-
cial to visualize and understand the problematic regions of the nuisance
space where the classifier has low confidence on transformed images.
The problematic regions are mathematically described by the posterior
distribution

pcl(θ |`(x),x) ∝ pcl(`(x)|Tθ x)pT (θ),

where pcl(`(x)|Tθ x) = 1− pcl(`(x)|Tθ x) is the probability that Tθ x is not
classified as `(x).

Sampling from this posterior distribution allows us to “diagnose” the
weak spots of the classifier; that is, nuisance parameters that can cause
classification errors.
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Experiments.

Quantitative evaluation of the robustness to affine transformations.

We evaluate quantitatively the robustness to affine transformations of dif-
ferent CNN architectures on MNIST. We show that
• Deeper networks are more robust to nuisances,
• While dropout leads to significant improvements in test accuracy,

it has no effect on the robustness,
• Data augmentation and spatial transformers [1] can lead to a quan-

titatively significant boost of the robustness.

Robustness of classifiers to piecewise affine transformations.

We show samples drawn from the posterior distribution pcl(θ |`(x),x) for
different state-of-the-art networks trained on ImageNet.
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Robustness of face recognition to occlusions.
We show different samples drawn from the posterior distribution pcl(θ |`(x),x),
where the classifier is VGG-Faces [2].

With relatively small occlusions, the classifier can achieve trivial er-
rors (e.g., Daniel Craig→ Anna Gunn).
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