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Abstract

In this paper we present a novel reflective method to estimate 2D-3D face shape
across large pose. We include the knowledge that a face is a 3D object into the learning
pipeline, and formulate face alignment as a 3DMM fitting problem, where the camera
projection matrix and 3D shape parameters are learned by an extended cascaded pose
regression framework. In order to improve algorithm robustness in difficult poses, we in-
troduce a reflective invariant metric for failure alert. We investigate the relation between
reflective variance and face misalignment error, and find there is strong correlation be-
tween them. Consequently this finding is exploited to provide feedback to our algorithm.
For the samples predicted as failure, we restart the algorithm with better initialisations
based on explicit head pose estimation, which enhances the possibility of convergence.
Extensive experiments on the challenging AFLW and AFW datasets demonstrate that our
approach achieves superior performance over the state-of-the-art methods.

1 Introduction

Over the past decades, face alignment, a process of localising semantic facial landmarks such
as eyebrows and nose tip, has been intensively studied as it is an essential prerequisite for
many face analysis tasks, e.g., face animation [21], 3D face modelling [17] and face recog-
nition [6]. Some previous works [23, 25, 40] have reported close-to-human performance on
academic datasets such as 300W [31]. However, face alignment across large poses in real
scenarios remains challenging and very limited attention and progress has been made.
There are mainly two inherent challenges associated with this problem: First, most ex-
isting face alignment algorithms attempt to learn a mapping from image appearance to land-
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Figure 1: Selected examples of images from AFLW database [26] processed by our method.
Left: The projection of landmarks to the 2D image plane. Right: estimated sparse 3D face
shapes in world coordinate system. Red point denote self occlusion which can be directly
computed from the fitted dense model by [18]

mark spatial distribution. Most of them are heavily initialisation dependent, from gradi-
ent descent based methods (e.g. Active Appearance Models [12] and Supervised Descent
Method [40]) to more recent popular non-parametric Cascaded Pose Regression [16]. Hence
for large-pose problem, feeding these algorithms with different initializations for the same
image might lead to quite different output, because dramatic appearance variation (e.g., self
occlusion) may cause the algorithm to be trapped in local optimum.

Second, spatial configurations of landmarks are highly different when faces deviate from
frontal to profile, and the existing 2D shape models have difficulty in modeling 3D out-of-
plane rotation. Although multi-view shape models [48] partially solve the pose variation
problem, they cannot cover unlimited possibilities of view changes. Whereas introducing
an additional 3D model is able to handle continuous pose views, traditional optimization
approach achieved by fitting a 3D morphable model [6] is inefficient and it also assumes the
2D landmarks are provided manually or by a separate face alignment method.

In this paper, we aim to address the above discussed challenges and make Cascaded
Pose Regression framework (CPR) perform better across large pose variations. Based on
the fact that 2D face image is a projection of 3D face model, we parameterize the configu-
ration of landmarks into 3D Morphable Model and the projection matrix, and regress them
in a unified framework. First, two regressors are learned for each cascaded stage, one for
predicting the update of camera projection matrix, and the other for predicting the update of
3D shape parameters. They work collaboratively to refine the predicted shape towards true
shape; Second, to tackle failures which always occur in large-pose problem, we propose a
novel reflective invariant metric to quantitatively estimate the alignments, subsequently the
estimation will guide the model whether there is a need to restart the algorithm with differ-
ent initialization. This is motivated by the fact that CPR are more sensitive to the horizontal
reflection of an image, and the reflective variance are highly correlated to the misalignment
error as we will demonstrate later; Third, instead of using mean shape or random shapes for
initialisation [4, 24], we propose a head pose based initilisation scheme, which will relax
failure alignments by explicitly incorporate a ConveNet head pose estimator. New initili-
sations can then be found by searching samples with similar head pose in the training set.

We summarize the main contribution of our works as: 1) Large pose face alignment
by fitting a dense 3DMM; 2) Introduce a novel reflective invariant metric, by investigating
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the relation between reflective variance and misalignment error; 3) A Reflective Cascaded
Collaborative-Regressor algorithm that reduces large pose face alignment failures greatly.

2 Related work

There is a wide range of literature on 2D facial landmark localization. Based on the types
of underlying models, we categorize them into parametric and non-parametric methods. The
seminal work of both AAM [2, 12, 34] and CLM [3, 14] are classic parametric algorithms,
which inspired many follow-on works. A fast AAM [36] was proposed for real-time face
alignment, an ensemble AAM [11] was presented to align landmarks on a image sequence
and a tree-structured model [50] was introduced to efficiently reformulate the CLM problem.
Recently, non-parametric regression methods receive high interests due to its high accuracy
evaluated on unconstrained face dataset and its fast performance. This include boosting
regressions [13, 28, 37], regression trees [15, 20, 22, 25], linear regressions [4, 39, 40,
44], etc. Among them SDM [40] and CPR [39] are very popular, which work in a similar
cascaded way but differ in several aspects such as how to select initialisations.

Despite the continuous improvement, large-pose face alignment remains very challeng-
ing and there are very few work reported in literature. Existing methods either exploit a
multi-view framework that uses different landmark configurations for different views, or
fitting a 3D model that attempt to achieve pose-invariant. TSPM [50] and CDM [46], for
instance, combine face detection, pose estimation and face alignment in a DPM-like frame-
work. However, since every view has to be evaluated, the computational cost is very high.
On the other hand, fitting a parametric 3D face model can theoretically cover arbitrary face
poses, and many works have done done in the context of pose-invariant face recognition. For
3D face alignment, Cao [10] jointly estimated a 3D face shape together with 2D landmarks
for face animation, and Sergey et al.[35] directly regressed a 3D face shape from a single
image with CPR. Their target was to advance performance on constrained images. Only
recently, Liu et al. [24] aligned arbitrary face with the assistance of a 3D sparse point distri-
bution model via a cascaded framework. However the performance is still far from mature
when compared with frontal-view face alignment. Additional efforts are still in need for
practical application, i.e., a failure-alarm mechanism, and a robust initialization scheme.

In this paper, we propose a reflective-regression of 2D-3D face shape model, which is
related to works like failure alert [47] for failure prediction, face recognition score analysis
[38] and meta recognition[32]. Our work differs from these works in two prominent aspects:
1) we focus on fine-grained semantic points localisation while they focused on instance level
recognition or detection. 2) we do not train any additional models for prediction while all
those methods rely on meta systems. In human perception, objects in horizontally reflected
images will be perceived as the same object; computer vision methods should do the same in
applications such as object recognition and scene classification. Inspired by this, [43] utilizes
observed appearance symmetry to assess object part localisation. However, in large poses
where up to half of the face can be occluded and there are will inevitably be no data in some
parts of the image. To overcome these issues, we introduce the reflective invariant metric to
estimate the prediction of 2D-3D face alignment. This valuable feedback greatly improves
the robustness of our method to large pose variations as shown in experiments.
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3 Methdology

3.1 3D Dense Face Modelling

Various 3D face models have been used in computer graphics and computer vision. In our
proposed method, we exploit the 3D Morphable Model (3DMM) [6] to describe the dense
3D shape of an individual face:

Nid . . Nexl) . .
S=S8,+ Z w8t + Z W pSexps (1)
i=1 i=1

where § = [x1,..., X, ...,Xx] is the 3D shape, x; = [xt,Vr,z]” is a point in the world coor-
dinate system, Sy is the average shape, Sfd and Séxp are the ith identity and ith expression
basis of the 3DMM, and w§ , and wéxp represent the ith identity and ith expression parameter
respectively. We built the identity basis Sfd based on BFM [30], and the expression basis
based on FaceWarehouse [8]. Therefore, any 3D face shape can be estimated by a collection
of both identity and expression parameters w = [w;y, wexp]T. With the assistance of 3DMM,
we are able to have a rich representation of rigid and non-rigid face shape transformation.
Subsequently, a 3D point x;, on the mesh can be transformed to image space once a projection
parameter is given: m = [s, Ry, Rg, Ry, 0,1

]T

[uge, v =5*Q*Rg*Rg *Ry*x; +1, 2)

the angles 8 and 7y control the in-depth rotations around horizontal and vertical axis, a de-

fines a rotation around the camera axis, s is the scaling factor, Q is the orthographic projection
0

matrix <(1) (1) 0), t = [ty,t,] is a spatial shit, and uy = [uy,v,]T defines the corresponding
image-plane projection position. Similar to prior work[24], we model 2D face shape by a
sparse set of facial landmark position (i.e., features on eyes, brows, nose, mouth and chew)
U = [u1,v1;u2,v2;...,uy,vy]", which is a projection of 3D shape S Note that, each land-
mark position in the image corresponds to a semantic vertex in the 3D facial shape, such
that projection of the 3D vertex on the image should match the 2D landmark. We denote
the correspondence by vt = [v], V12, ..., vty]. For convenience, we define [, as the mapping
function that transform a 3D shape in world coordinate to the 2D image plane, by taking
projection parameter m, 3D shape parameter w, and vertex correspondence vt:

U= Hm(SO7Sidasexp;W7Vt)- (3)

Data Augmentation. To learn a 3D face shape predictor is difficult due to lacking of data
of 2D image and 3D model pairs in unconstrained environment. While 2D annotation U
is available for most face datasets, it is still hardly possible even for a human annotator
to estimate the z-coordinate by observing just a single 2D image. In order to leverage the
existing dataset, we first generate reflective images by taking horizontal flipping, and then
propose a data augmentation method for 2D face image, based on the assumption that a 3D
model can be accurately fitted given sufficient 2D landmarks [9, 51].

N
E(m,W) — ZHHm(807Sidasexp;Wthi)_uiH27 (4)
i=1
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which minimise the difference between the projection of 3D landmarks in fitted model
and 2D ground truth U. This objective function is minimised using the coordinate-descent
method, by alternately optimizing one parameter m or w while fixing the other in each iter-
ation until convergence. Therefore 3D model can be constructed by estimating m and w.

Cheek Landmark Marching. For each 2D landmark, there is a corresponding vertex
index vt; on the 3D model. While the indices for internal landmark are fixed, the contour
landmarks will move along face silhouette when face deviate from the frontal view. Different
from a sparse 3D landmark shape model in [24], our dense 3D model will adaptively adjust
the 3D landmarks during the fitting process assisted by landmark marching method [51], so
that the cheek landmarks consistently contribute to the prediction.

3.2 Reflective Invariant Metric

Intuitively, it is reasonable to expect that a salient location that is interesting in an image
should also be interesting in the same image that is horizontally reflected. As human percep-
tion is invariant to horizontal reflection: they are equally able to locate and recognize object
parts regardless whether they are looking at the original images, or the horizontally reflected
image, as if looking at a mirror. However, algorithms in various computer vision tasks strug-
gle to exhibit such consistency when an image is reflected. In a study [19], feeding a pair of
reflected face images to the popular Microsoft’s How-Old.net [ 1] surprisingly returned quite
different age results though a consistent output is expected.

In our observation, such inconsistency also exist in large-pose 2D-3D face alignment.
Furthermore, this inconsistency very likely indicates the misalignment of the original image.
Inspired by this, we introduce a reflective invariant metric: to be reflective invariant, an
algorithm must show that a set of keypoints found in its image are equivalent to those found
in a horizontally reflected image. To enable quantitative analysis, a direct way is to project
the predicted dense 3D model to 2D image plane, and for efficiency, which can further be
measured by a sparse set of landmarks. Specifically, let U? = {uf }ﬁ\’: | denote the projection
from predicted 3D of one image, and U? = {u? }i\’: | denote the projection from predicted 3D
of its reflected image, such that sample-wise reflective error can be obtained:

gr N*f ZH“ refq—w(u?)H? (5)

where f(I) is the image-dependent normalisation factor, ref,_,,(u}) represents the function
which transfers ith 2D point from one to another for mutually reﬂected images. Generally
this process contains two part: 1) find a corresponding bilateral symmetric index i/ with
assistance of a look up table (e.g., a left eye becomes right eye in mutual reflected image);
2) apply horizontal coordinate flip, that is, x§ = wy — X;, where wy is the width of image.
Given a pair of mutual reflected face images, should be no difference whether the image or
its reflected version is considered to be original. Thus, it is safe to say there is misalignment
alarm when the reflective error is significant. To be complete, given the ground truth U%’, the
alignment error can be expressed as:

gt
ga N*f ZH“ i H? (6)

Studying relationship between reflective error and misalignment error would help us to
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Figure 2: The proposed framework of our work

design a robust algorithm, especially for our large pose face alignment problem. In the next
section, we show how to incorporate reflective feedback to our prediction process.

3.3 Reflective Cascaded Collaborative-Regressor

With a set of M training data {(I;,m;,w;)} augmented with estimated ground truth, we are
interested in learning an efficient regression function that predict m and w from a single im-
age. Therefore, the problem of 2D-3D face alignment is transformed to learning a projection
parameter m and shape parameter w based on our representation. However, the challenges
lie in: a) The appearance of unconstrained face image vary dramatically across large pose
due to self occlusion (ranging from frontal view to profile view). Hence, complex input ap-
pearance demand a more advanced non-linear mapping function. b) Projection and shape
parameters typically exhibit different amount of variation over large pose. Thus, regressing
two parts together is very difficult and cause slow convergence and degraded accuracy.

Motivated by the success of cascaded pose regression framework (CPR)[33, 39], we
propose a cascaded collaborative-regressor algorithm, which starts from an initialisation
{m" w%} and progressively refines the parameters in an additive manner via a sequence
of T regressors, R!*T, such that the estimated parameters gradually approximate the ground
truth, where, the input feature built on current estimation for each regressor R’ provide ge-
ometric invariance. Specificially, there are two regressors to be learned at the cascaded rth
layer for our algorithm, namely R™’ () and R"”(x), each of them is learned by fitting the
residual parameter between the ground truth and the current estimation as in [39], which
enable them to work collaboratively during runtime:

mt _ mt—l + Rm,t(hm,t (I,Um’t_l)), (7)

Wt _ Wt—l _‘_7zw,t(hw,t(17 Uw,t))’ (8)

where U™~ comes from Eq. (3) by finding {m'~!,w'~! vt'~1}. After applying R™",
we collaboratively update U™ with {m’, w'~! vt'}, and h* is the feature extractor indexed
based on current 2D estimation. The cascaded collaborative-regressor algorithm is indepen-
dent of particular feature extractor and regressor. In our paper, we use nonlinear HOG-based
regressor as R’ (x) [42] and the famous fern regressor as R" () [7]. Consequently they
are adopted to alternate between the estimation of m and w, similar to face construction[29].
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Figure 3: From left to right are: (a) correlation between alignment error and reflective error;
(b) correlation of alignment errors between mutually reflected images; (c,d) misalignment
examples of mutually reflected images.

Motivation of Reflective Feedback. CPR is initialization dependent. Previous works
[7, 39] suggested to run the algorithm with several random initialisations and take the median
as the final output. However, as stated in [41] only initialisations that are in the range of the
optimal shape can converge to the correct solutions. Having several randomly generated
initialisations does not guarantee that correct solutions are reached. In our case, firstly, 3D
face alignment is inherently challenging in literature; Secondly, the spatial distribution of
landmark is highly pose dependent; The representation is composed of 3D parameters, and
the mapping is likely more complicated than CPR in 2D face alignment, which result in more
failures. To overcome these issues, a reliable feedback mechanism is in needed. With this
goal in mind, we decide to investigate how to marry our proposed reflective invariant metric
with cascaded collaborative regressor. We augment the training set with reflected images to
avoid bias. The results on testing set in Fig. 3 show that: a) the alignment error is strongly
correlated with reflected error, when significant misalignment presents on one image, it is
very likely to fail on the reflected image; b) The failure on mutual reflected images are not
symmetrically consistent. With these nice properties, we use proposed reflected invariant
metric as a mirror to reflect the beauty of prediction during runtime. Specifically, given
a test image, we generate its reflected one, then they are processed by our Collaborative-
Regressor and we compute its reflected error. If the reflected error is above a threshold
(by cross-validation the threshold can be set to 0.1, metric described in experiment part)
we restart with different initialisations, otherwise the original one is kept. Although more
sophisticated approaches are possible, this straightforward scheme is already quite effective.

Smart Restart Based on our observation, the alignment error highly depends on param-
eters estimation, e.g., the error of a profile face is mainly caused by a yaw angle, the error of
an open-mouth is always caused by a close-mouth parameter. We therefore relax the prob-
lem by incorporating a fast ConvNet head pose estimator[45]. For test images that require
restart, we first get a reasonable head pose estimation, then we search samples in the training
set that are with similar head pose as the test image. Subsequently, we calculate the simi-
larity transformation between the two face bounding boxes to adjust scale and translation of
selected samples. Once we get a set of better initializations, we feed one back to our RCCR
in 3.3, this process can be continued until reflective error below a threshold, or the entire set
is explored (in this case, we choose the output with smallest reflective error). The general
framework of our proposed method can be found in Fig. 2.
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4 Experiment

4.1 Experiment Preparation

In this paper, we propose a robust face alignment method for unconstrained large-pose set-
ting. We therefore conduct the experiments on the following publicly available datasets:

300W and 300W-LP: The popular benchmark 300W [31], which include 3837 uncon-
strained face images from several datasets with 68 landmarks annotation. 300W-LP extended
the original dataset across large poses by face profiling, which include 61,225 samples (1,786
from IBUG [31], 5207 from AFW [50], 16,556 from LFPW [5] and 37,676 from HELEN
[27]), which is further expanded to 122,450 samples with horizontal flipping.

AFLW: AFLW [26] contains about 25,000 real-world face images, each image is anno-
tated with 21 landmarks upon visibility, and a bounding box. Given the dataset with large
yaw pose variation ( from —90° to +90°), it is very suitable for evaluating our method across
large poses.

AFW: AFW [50] was built using Fickr images. it has 205 images with 473 labeled
faces. The annotations for each face include a bounding box, 6 landmarks and head pose
angles (£90°) .

Experiment setup To build our proposed model, we select a subset of 2407 images from
300W-LP (excluding AFW) and 2754 images from AFLW for training, where the numbers
of images whose absolute yaw angle within [0°, 30°], [30°, 60°], [60°, 90°] are evenly dis-
tributed, roughly % in each category. Test set come from AFLW, samples fall in pose [0°,
30°], [30°, 60°] and [60°, 90°] are 428, 365 and 372 respectively. We first get the tightest
bounding box of each image from the ground truth landmarks, and then expand its size by
10%, and add 10% noise to the top-left corner, width and height size of the bounding box,
which mimic the imprecise face detection. For each image, we also generate its reflected
image by flipping horizontally, note that, we will use the mutually reflected ones for both
training and testing. We construct augmented information for each image using method de-
scribed in Sec. 3.1, which contains estimated ground truth 3D face and corresponding 68
landmark for each sample. For training, We augment each training sample with 15 sets of
initialisations {m", w’}, one set is mean parameter (mean projection parameter in training
samples, mean 3D shape by setting all shape parameters to zero), others from randomly se-
lected sets of parameters in training data. The stage for our RCCR is T = 10, R™' are learned
to predict 6-dimensional projection parameters. R regressor is composed of 300 primitive
ferns that learned to predict 199-dimensional identity parameters w;; and 29-dimensional
expression parameters wey,. For evaluation, we use two conventional metrics for measuring
the error of landmarks: 1) Normalised Mean Error (NME) [46] which is the average of land-
mark error normalised by the bounding box size rather than the common eye-to-eye distance.
Since it is not well defined in large pose such as profile face, NME is obtained by setting the
f(I) as the square root of the face size in Eq.(5, 6). 2) Mean Average Pixel Error (MAPE)
which is simply obtained by setting f(I) = 1.

First of all, we evaluate the effectiveness of our proposed method in component-wise
manner on AFLW test set. We compare to 1) RCCR without reflective feedback (CCR). 2)
RCCR with reflective feedback and 5 random restart initialisations (RCCR). 3) RCCR with
reflective feedback and 5 smart restart initialization (RCCR + SR). The comparison is shown
in Fig. 4. As can be seen on the left figure, by using the reflective feedback, we achieve big
improvement over CCR, which suggests us a failure-alarm mechanism is indeed very useful.
Moreover, by using the head pose based initialisations, we achieve even better performance,
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though the improvement is relatively minor.

4.2 Comparison with Baselines

Baselines: Though remarkable progress have been reported on face alignment, there are very
few works claimed as pose-free. We therefore choose recent popular methods with released
codes: CDM [46], RCPR [7], SDM [40], and TCDCN [49]. Among them CDM [46] is the
first one claimed to perform pose-free face alignment, which is a CLM-type method that can
handle all the poses and outperforms multiple-view tree based methods. RCPR [7], which
was proposed to handle heavy occlusion, and potentially able to deal with self occlusion
caused by large pose. SDM[40] has shown superior performance in various tasks e.g. 3D
pose estimation and face alignment. TCDCN [49] is a multi-task deep learning algorithm
that represents recent development in face alignment. These methods not only well represent
the major categories of the state of the arts in face alignment, but are also consistent with our
goal of face alignment across large poses.

Comparison on AFLW We train RCPR, and SDM methods by using the same partition
as mentioned in Sec. 4.1. To have a fully understanding of the benefit of 3D modelling,
we train each method on the *300W’ dataset (without 3D), and on the ’Full’ set (contains
300W-LP and AFLW, with 3D) respectively. We then divide the test set of AFLW images
into three subsets[0°, 30°], [30°, 60°], [60°, 90°] and evaluate each method on each subset
respectively. The NME results for different methods are shown in Tab. 1. As expected,
our proposed RCCR achieve state of the art performance when compared with baselines
under different poses, and more impressively, it demonstrates robustness to pose-variation
according to standard deviation. The improvements on Full’ set over ’300W’ set for each
method are significant, 51.20% for RCPR and 46.99% for SDM in [60°, 90°], due to its
rich representation of 3D modelling, which can be used either for face profiling or shape
parameter variations.

Comparison on AFW In addition to AFLW, we also report on AFW with two baselines,
CDM and TCDCN. The reasons are: they were both evaluated on AFW though different
metrics were exploited in the original papers, and they only provide the executable file of the
trained models, which predicted on fewer landmarks. CDM does not rely on bounding box
input since it integrates face detection and face alignment. TCDCN reports on 5 landmarks
on the subset of images whose absolute yaw angle are up to 60°. To make a fair comparison,
we use the metric MAPE, and all methods are evaluated on 5 landmarks. We choose a
subset of 242 faces with successful face detection by CDM which share similar pose range
as TCDCN. The results are showed in Fig. 4. Again, we see the consistent improvement of
our proposed method over the baseline methods.

Methods [0, 30] | [30,60] | [60,90] | Mean | Standard deviation
RCPR[7] 6.28 17.53 33.62 18.53 11.32
RCPR (on 300W) 5.51 9.94 22.37 12.28 7.15
RCPR (on Full) 5.54 6.37 10.91 7.51 2.35
SDM (on 300W) 5.33 7.26 18.15 10.03 5.61
SDM (on Full) 5.32 6.85 9.62 7.17 2.34
RCCR (on Full) 5.38 5.87 6.86 6.01 1.32
RCCR (Full + SR) | 5.27 5.34 6.53 5.70 1.24

Table 1: The NME(%) results on AFLW.
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Figure 4: Left: the analysis results on AFLW with different versions of our proposed RCCR.
Right: MAPE results of face alignment methods on AFW.

5 Conclusions

With the assistance of 3D Morphable Model, we in this paper propose a novel Reflective Cas-
caded Collaborative-Regressor algorithm, which achieves the state-of-the-art performance
for the challenging problem of face alignment across large pose. Different from traditional
CPR framework, we propose an "reflective invariant metric" and successfully marry it with
CPR. We have shown that reflective variance is highly correlated with alignment error in our
problem, which in turn provide us an failure-alarm signal and helps us to improve the algo-
rithm robustness due to failure. We therefore suggest researchers to incorporate "reflective
invariant" as a measure of success of the algorithm in the future.
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