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Figure 1: (a) Conventional re-id: A re-id model is
trained on a fully labelled training set, then fixed for
deployment; (b) Active re-id by HER+: A training set
is actively labelled incrementally on-the-fly as a re-id
model is incrementally learned, and further updated
without re-training during future deployment.

This work is motivated by two very intuitive re-
quirements for a scalable re-id system [2]: (1)
Low model complexity with scalable computa-
tional cost and memory usage in model train-
ing; and (2) High model adaptability support-
ing fast model update to incorporate any new
and increasingly larger data. A Highly Effi-
cient Regression (HER) model is formulated by
embedding the Fisher’s criterion to a ridge re-
gression model for very fast re-id model learn-
ing with scalable memory/storage usage. Im-
portantly, this new HER model supports faster
than real-time incremental model updates there-
fore making real-time active learning feasible in
re-id with human-in-the-loop (Fig. 1).

Our Highly Efficient Regression (HER) so-
lution for re-id has a very simple and fast closed-
form solution, involved with only a set of lin-
ear equations. It is readily scalable to large data
with many off-the-shelf efficient implementation
available. The base HER model for adopts the
form of minimising a least mean squared error:

P = argminP
1
2‖X

>P−Y‖2
F +λ‖P‖2

F , (1)

where X ∈ Rd×n refers to the labelled data, and
P ∈ Rd×k refers to the discriminative projection
to be learned. To make the estimated subspace
person identity discriminative, FDA [1] criterion
are further embedded. Moreover, to incorporate
new and increasingly larger data in a real-world,
we further introduce an incremental learning for-
mulation HER+, enabling fast model updates
without the need for re-training from scratch.
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Figure 2: Joint exploration-exploitation criteria
for active re-id.

The efficient model updates achieved by
HER+ makes makes active learning re-id with
human-in-the-loop feasible with reduced human
labelling costs. A joint exploration-exploitation
(jointE2) active sampling strategy is further pro-
posed (Fig. 2). Three criterion are considered for
selecting most useful samples to maximise the
re-id model’s discriminative power (1) Appear-
ance diversity exploration, (2) Matching uncer-
tainty exploitation, and (3) Ranking uncertain-
ty exploitation. Finally, these criterion are com-
bined into the final active sampling strategy.

For experimental results, when evaluated
under the conventional supervised re-id set-
ting on three popular re-id benchmarks, VIPeR,
CUHK01, and CUHK03, HER achieves Rank-
1 rates of 45.1%, 68.3% and 60.8% respective-
ly, outperforms all existing competitors. The
computational efficiency of HER is also evalu-
ated and it is shown that HER is the fastest in
batch training over other state-of-the-art model-
s. When evaluated under the active re-id set-
ting where a model is trained incrementally, it
is shown that: (1) HER+ incremental updates
is much more efficient than re-training from
scratch; and (2) The proposed jointE2 sampling
strategy effectively reduces human labelling ef-
fort and achieves better re-id performances.
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