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Abstract
We investigate the reasons why context in object detection has limited utility by iso-

lating and evaluating the predictive power of different context cues under ideal conditions
in which context provided by an oracle. Based on this study, we propose a region-based
context re-scoring method with dynamic context selection to remove noise and empha-
size informative context. We introduce latent indicator variables to select (or ignore)
potential contextual regions, and learn the selection strategy with latent-SVM. We con-
duct experiments to evaluate the performance of the proposed context selection method
on the SUN RGB-D dataset. The method achieves a significant improvement in terms
of mean average precision (mAP), compared with both appearance based detectors and
a conventional context model without the selection scheme.

1 Introduction
Context captures statistical and common sense properties of the real-world and plays a criti-
cal role in perceptual inference [18]. There are numerous studies that demonstrate the advan-
tages of context in object recognition [2, 5, 7, 18, 19]. In contrast, other investigations have
revealed situations in which context does not improve the performance of object detection
[17, 30], and sometimes introducing context even decreases performance [30]. Addition-
ally, driven by the development of deep CNNs [15, 24], the performance of object detection
has been dramatically boosted [9, 10, 13, 21]. While context has been incorporated into
deep learning frameworks, the performance gain from context itself has not been significant
[4, 16]. This leads to the question: how important is context in object detection when we
have reasonably good detectors?

To address this question, we study possible reasons why context might not improve de-
tection. First, imperfect extraction of context information introduces errors into contextual
inference. For instance, when visual context information is extracted through imperfect
appearance-based detectors, as shown in Figure 1(a), incorrectly-detected regions can intro-
duce noise into contextual inference, limiting the gain from context provided by correctly
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detected regions. Second, contextual information that is hard to extract or has low predictive
power can introduce errors into context that is easy to detect and is very predictive. For
example, when predicting the presence of a pillow in an image using context provided by
other objects of different categories, some object categories, such as beds and sofas, which
are easier to detect and have strong relationships with respect to pillow, are informative as
context. Others, such as boxes and pictures, which are either hard to detect or irrelevant to
pillows, are likely to be useless or even misleading.

To further investigate these challenges, we conduct a simulation to study the role of
context in isolation, without appearance-based clues. Since reliable contextual relationships
between object pairs can be most reliably learned in sufficiently structured scenes, we utilize
the SUN RGB-D [25] dataset, which is one of the largest indoor-scene datasets and contains
a large number of annotated objects. For a given image with ground truth bounding boxes
for all objects, we predict the label for each object, one at a time. The object whose label
is to be predicted is referred to as the target object and the other objects are referred to as
contextual objects. For the unknown target object, we remove the uncertainty of all remain-
ing objects by assigning them to their ground-truth labels and use object-to-object contextual
relationships to predict the label of the target object without access to its appearance. We
observe very good prediction accuracy, which implies that, without detection noise, simple
contextual relationships between objects can boost detection performance. We then study
how predictive each object class is of a given target object class by ignoring one contextual
object class at a time. The results suggest that different object classes vary in their ability to
predict the presence of certain target object categories.

Motivated by these experiments, we propose a region-based context re-scoring method
with dynamic context selection, illustrated in figure 1(b), which seeks to eliminate false pos-
itive contextual regions while emphasizing likely true positive and informative ones. Specif-
ically, we introduce a latent variable for each contextual region that determines if that re-
gion will be selected to provide context information. In practice, it is intractable to select
the optimal set of contextual regions that provide the most trustworthy information when
contradictory evidence exists, both for and against the target object having a certain class
label. Instead, we decompose the problem by selecting informative regions that provide the
strongest supporting and refuting evidence independently to compute a For upper-bound and
an Against upper-bound of the confidence score, and then re-score the confidence for that
object being in that class based on the difference between the two upper-bounds. The model
for computing the two upper-bounds is trained by latent-SVM [6]. The proposed method is
evaluated on the SUN RGB-D dataset and achieves 48.25% mean average precision (mAP),
an improvement of ∼ 2.8% over using object detections without context (45.47%). We also
conduct experiments to study the performance of the selection model. Both the simula-
tions on pure context and the real-world experiments using the proposed selection method
demonstrate the importance of object-to-object context and the gain attributed to the context
selection scheme.

2 Related Work
Many techniques have used context to improve performance for image understanding tasks.
For instance, Torralba [26] proposed a framework for modeling the relationship between
context and object properties, based on correlations between the statistics of low-level fea-
tures across the entire scene and the objects that it contains. Divvala et al. [5] defined several
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Figure 1: Context Selection with Noisy Detection: (a) imperfect detections from the Fast
R-CNN detector fine-tuned and used on the SUN RGB-D dataset produce a large number
of false positives; (b) the proposed context selection method selects a subset of contextual
objects from the imperfect detections to improve detection.

context sources and proposed a context re-scoring method that uses a regression model on
multiple contextual features. Felzenszwalb et al. [6] proposed a simple context re-scoring
model running on appearance-based detections. Graphical models have been widely applied
to image segmentation and recognition tasks by jointly modeling appearance, geometry and
contextual relations [3, 11, 23, 30]. In [17], context clues were extended from 2D to 3D
object detection.

Recent advances in deep neural networks and R-CNN based detectors in both 2D and 3D
have resulted in reliable appearance-based detectors [9, 10, 13, 21]. Context models have
also been applied to deep learning features or detection results. Wenqing et al. [4] evaluated
the performance of a joint CRF model on Faster R-CNN detections. Zhang et al. [31]
adapted the topology of neural networks to embed 3D context and performed holistic scene
understanding based on scene context. Bell et al. [1] explored the use of spatial Recurrent
Neural Networks (RNNs) to gather context information as well as to capture fine-grained
details from multiple lower-level convolutional layers.

In contrast to the above approaches, our method introduces the concept of context selec-
tion to identify a subset of contextual objects which are highly likely to be true positives and
informative. Our context selection method can be viewed as a "hard" attention based visual
attention model that only pays attention to the selected contextual objects [29].

3 The Role of Pure Context

We first conduct an experiment to analyze the utility of pure contextual relationships between
objects in object detection. In this experiment, we only consider the ground-truth bounding
boxes, and the label for a given box is predicted using only context information between the
target box and the remaining boxes for other objects in an image. When predicting the label
of the target object, we only consider its bounding box and intentionally ignore appearance
information such as color, shape and texture. Moreover, the ground-truth labels and bound-
ing boxes of all contextual objects are revealed to remove the influence of uncertainty in
context. We consider three types of object-to-object context: co-occurrence, relative scale
and spatial relationships.
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3.1 Predicting Object Class using Pure Contextual Relationships
Prediction is performed by a linear classifier. Given an image I, assume there are N + 1
ground-truth objects, drawn from M object categories. When predicting the label of a target
object t, the ground-truth bounding boxes of t and the remaining N objects are given, along
with the the labels for all objects other than t. The confidence that object t is in class T is:

Score(otT ) =
N

∑
j=1

M

∑
i=1

[Co(otT ,o ji;wco)+Sc(otT ,o ji;wsc)+Sp(otT ,o ji;wsp)] · l ji +b, (1)

where otT indicates that the target object t is assigned label T , and o ji indicates that the jth

contextual object is in class i, l ji is a binary indicator variable with l ji = 1{label j = i}, and
b is a bias term. The terms Co(·), Sc(·) and Sp(·) measure co-occurrence, relative scale and
spatial relationship defined in equation (2):

Co(otT ,o ji;wco) = wco(T, i) · logdco(otT ,o ji) (2)
Sc(otT ,o ji;wco) = wsc(T, i) · logdsc(otT ,o ji,r)

Sp(otT ,o ji;wsp) = wspx(T, i) · logdspx(otT ,o ji,x)+wspy(T, i) · logdspy(otT ,o ji,y),

where wco, wsc, wsp are weight vectors for each set of contextual features respectively. The
term dco(otT ,o ji) is the likelihood that a target object t of category T and object j of category
i co-occur in the same image. The term dsc(otT ,o ji,r) is the likelihood that a target object t of
category T and object j of category i have relative scale ratio r. The terms dspx(otT ,o ji,x) and
dspy(otT ,o ji,y) are the likelihoods that a target object t of category T and object j of category
i have relative spatial distance (distance along one axis normalized by the height/width of the
image) x along X-axis, and y along Y-axis, respectively. The likelihoods are learned from
the statistics of the training set. For the co-occurrence context information, we use a two-
bin histogram to represent the likelihood for the co-occurrence of a target-context object
pair. For the relative scale and the spatial context, we categorize the relative scale ratios
and relative distances into n slots and use an n-bin histogram to represent the likelihoods.
Examples of the histograms can be found in the supplementary material. Laplace smoothing
is applied to avoid zero counts.

Given this linear model and the features extracted based on the likelihoods, we train a
multi-class classifier using structural SVM [27]. To evaluate the performance of object de-
tection using pure context, we compute prediction accuracies on the 19 common objects used
in the SUN RGB-D dataset; the same object categories are used as contextual objects. The
average accuracy is 70.68%, which is quite high considering that no appearance information
is utilized. The accuracy for each object class can be found in the supplementary material.

3.2 The Role of Different Contextual Object Categories
The above experiment shows the predictive potential of pure context. Do all object categories
provide equally informative context when predicting the label of a target object, or are some
of them more informative than others? To answer this question, we evaluate the predictive
power of each object category with respect to a given target object category. For each target
object category T , we measure the relative accuracy loss (RAL), defined as RAL(T,C, i) =
AccuracyC−i(T )−AccuracyC(T )

AccuracyC(T )
, when removing the ith object category from the set C of contextual

object categories. Some RAL examples are shown in Table 1 and 2. For each target object
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category, we show the object categories that lead to the top five largest RALs. We observed
that different object categories have significantly different predictive power depending on
certain object categories.

Table 1: Relative Accuracy Loss (RAL): T
= Pillow

pillow bed sofa lamp night-
stand

RAL 0.28 0.24 0.17 0.08 0.04

Table 2: Relative Accuracy Loss (RAL): T
= Bookshelf

book-
shelf

chair desk table box

RAL 0.35 0.27 0.17 0.11 0.03

In summary, pure contextual information between object pairs has high predictive power,
but each contextual-object category, not surprisingly, predicts some target categories much
better than others.

4 Region-based Context Re-scoring with Dynamic
Context Selection

Based upon the above analysis, we propose a model to improve detection based on context,
where contextual objects are detected automatically and are thus noisy probabilistic detec-
tions. We utilize the appearance clues from state-of-the-art detectors for predicting a target
object’s label. The same contextual relationships discussed in the previous analysis between
a detected target bounding box and the remaining ones are utilized, but each box is a re-
gion with an (M + 1) associated probability distribution over the possible labels including
the background. We introduce binary latent variables for all contextual regions, indicating
whether a contextual region is selected in the context re-scoring process.

4.1 Test-Time Re-scoring using For-and-Against Upper Bounds
We propose a region-based context re-scoring model with context selection. The re-scored
confidence for the target object t being in category T is:

Score(otT ) =w0 logA(otT )+
N

∑
j=1

M

∑
i=1

[Co(otT ,o ji;wco)+Sc(otT ,o ji;wsc)+Sp(otT ,o ji;wsp)

(3)

+wAc(i) logAc(o ji)] · l j +b,

where A(otT ) and Ac(o ji) represent the appearance-based confidence scores of the target and
the contextual objects, w0 and wAc(i) are the corresponding weights, and l j is the binary
indicator variable for context selection. The proposed method can be viewed as a tree model
where the target object (the root) collects context information from the selected contextual
objects (the leaves). In contrast to traditional graphical models, the proposed method is an
approximation that decomposes the re-scoring process into two independent ones due to the
intractability of jointly solving the context selection with contradictory context information.

Our model, intuitively, corresponds to a courtroom where the prosecutors tries to prove
that the target object does not come from a given class by providing the most compelling neg-
ative evidence (a small set of confidently detected context objects whose presence is incon-
sistent with that label for the target object), while the defendant’s lawyer provides the most
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compelling evidence for the truth of the claim that the target object is from the given class.
Our goal is to learn, from training data, how these "arguments" should be constructed for a
given target class. That is, we seek to learn a computational model for a multi-valued logic
[8] in an attempt to avoid noise in detection and ambivalence in contextual prediction (from
the large number of incorrect and irrelevant potential objects in an image) from overwhelm-
ing the clear and compelling evidence concerning the identity of the target object. This type
of multi-valued logic has been used before for human detection (where reasoning considered
occlusion and image border effects [22]), but actually learning how to choose these evidential
arguments from training data has not been done before. So, our solution involves identifying
the different sources that provide supporting and refuting evidence independently, and then
to combine the degree of belief for and the degree of belief against to obtain the final confi-
dence of a target object being in class T . Specifically, we first re-score each target object t by
selecting the evidence that most strongly supports it being in a certain class to compute its
For-Score, and select the evidence that most strongly argues against it for its Against-Score.
Both the For-Score and the Against-Score can be computed by maximizing function (3) over
all possible indicator vectors that consist of indicator variables for all contextual regions, but
with different weight vectors. The weight vector for computing the For-Score is learned with
positive samples that are in class T , while the weight vector for the Against-Score considers
the objects that are not in class T as the positive samples. The For-Score can be viewed as
a belief upper bound for a target object being in class T . In both cases we select contex-
tual regions with high appearance-based confidence scores by forcing the weight wAc(i) to
be positive. The final degree of belief for the target object t being in class T is the margin
between the For-and-Against upper bounds: Score(otT ) = ScoreFor(otT )−ScoreAgainst(otT ).

4.2 Training with Latent-SVM
The proposed re-scoring model with dynamic context selection can be trained using latent-
SVM [6]. The processes for learning the weights for computing the For-Score and the
Against-Score are the same except for the choice of positive samples. We describe the gen-
eral training process. The weight vector and feature vector for an sample x are shown in
equation 4 and 5.

w =
{

w0,wco,wsc,wsp,wAc ,b
}
, (4)

φ(x, l) = {logA(otT ),
N

∑
j=1

logdco(otT ,o j1) · l j, (5)

· · · ,
N

∑
j=1

logdco(otT ,o jM) · l j,
N

∑
j=1

logdsc(otT ,o j1) · l j,

· · · ,
N

∑
j=1

logdsc(otT ,o jM) · l j,
N

∑
j=1

logdsp(otT ,o j1) · l j,

· · · ,
N

∑
j=1

logdsp(otT ,o jM) · l j,
N

∑
j=1

logAc(o j1) · l j · · · ,
N

∑
j=1

logAc(o jM) · l j,1},

where l is the vector consists of indicator variables.
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The re-scored confidence for a sample x is determined by a classifier using a function of
form:

fw(x) = max
l∈L(x)

w ·φ(x, l), (6)

where L(x) consists of all possible latent vectors for sample x. The objective function to be
minimized is:

loss(w) =
1
n

n

∑
i=1

max(0,1− yi fw(xi))+
λ
2
‖w‖2, (7)

where we adopt the hinge loss to minimize the loss in a max-margin manner. The constant
λ is used to weight the regularization term.

Although a latent-SVM leads to a non-convex optimization, we can efficiently solve it
using coordinate descent by leveraging its semi-convexity property. The coordinate descent
method involves two steps. Firstly, positive samples are relabeled by selecting contextual-
regions that scores the target object highest by solving a linear programming problem:

l = argmaxl∈L(x)w ·φ(x, l), (8)

and then, the weight vector w is optimized by solving a convex optimization problem by
minimizing the loss in equation (7) given the relabeled positive samples.

5 Experiments

5.1 Dataset
We use the SUN RGB-D dataset, which contains images from [14, 20, 28], to evaluate our
proposed method. We consider the 19 most common classes in the dataset. The performance
is evaluated through the average precision (AP) of object detection. For comparison, we
evaluated several R-CNN based detectors, and chose as the baseline one that utilizes the
depth modality by supervision transfer (ST) [13], which uses object proposals from [12] and
yields state-of-the-art mAP on the SUN RGB-D dataset for 2D object detection.

5.2 Context Selection Model and Baseline Models
Besides ST, we also compare our context selection model (CS) with the baselines including
the one that "selects all" (SA) contextual regions and the one that only considers either the
For upper-bound (FUB) or the Against upper-bound (AUB). For each object category T, we
train the model based upon appearance-based detections using latent-SVM. When predicting
a target object’s label, we set a precision threshold (and choose corresponding appearance-
based confidence score thresholds of all contextual objects), and only consider detections
with scores higher than the thresholds as potential contextual objects to ensure the context
precision for the potential contextual objects of each class reaches the precision threshold.
To train the FUB model, we label boxes that have ground-truth labels in class T as positive
samples and select from supporting evidence to obtain the For upper-bound. The training
process for the AUB model is obtained by simply reversing the positive and negative training
labels. During the test, for each target object t, the context selection model selects supporting
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refuting evidence separately to compute the FUB and the AUB, and then uses the margin
between them as the final confidence score for object t being in class T .

Does context selection work? We compare the context selection model with the select-
all model by measuring average precision. Table 3 shows the average precision of the 19
object classes when the precision threshold for contextual regions is set as 0.4. The Precision-
Recall (PR) curves can be found in the supplementary material. We achieve only a 0.43%
mAP gain by the SA model, with some classes improving notably (counter, desk, lamp
and pillow), while others (bathtub, chair, monitor, dresser, sofa, sink and toilet) degrading
when considering all contextual regions. When we apply context selection, we see large
improvement in AP on almost all classes compared to both the ST and SA baselines. We
observe ∼ 2.8% mAP gain by the context selection method.

bathtub bed book-
shelf

box chair counter desk door dresser garbage
bin

lamp monitor night
stand

pillow sink sofa table tv toilet mAP

ST [13] 67.70 76.44 43.45 18.02 42.15 32.06 24.94 22.93 40.27 52.83 49.73 47.80 56.30 48.75 19.92 50.82 42.83 45.66 81.35 45.47
SA 59.61 77.62 42.12 19.46 40.01 35.80 33.86 23.75 39.72 50.81 51.19 43.87 61.44 51.20 17.61 49.37 45.86 48.39 80.37 45.90

FUB 67.75 78.89 45.60 22.11 39.19 34.82 29.54 23.92 41.19 52.51 53.22 48.76 59.61 53.06 23.19 50.72 43.74 50.68 81.53 47.37
AUB 67.54 78.77 45.64 20.42 40.21 35.06 26.80 23.75 41.04 52.97 52.84 48.93 58.62 51.69 23.32 52.07 46.65 45.59 81.51 47.02
CS 69.15 80.09 45.94 22.33 42.04 35.57 29.84 24.44 40.85 53.51 53.67 48.96 60.18 54.19 24.60 48.99 48.86 51.06 82.50 48.25

Table 3: Average Precision (AP) on SUN RGB-D Test Set. ST [13] is the appearance-based
detector using supervision transfer. SA is the context model that selects all detections from
ST as contextual regions. FUB is the context selection model that only considers supporting
evidence. AUB is the one similar FUB but only considers refuting evidence. CS is the full
model that selects a subset of detections as contextual regions and models the supporting
and refuting evidence together. The performance gain by selecting all contextual regions is
marginal, but when context selection is introduced, the performance is significantly boosted.

How does context selection compare to simple threshold-based filtering? One may
wonder whether the selection method can be modeled by a simple threshold-based selection
on contextual regions based on their appearance-based confidence scores. We conducted
an experiment to compare the performance of the proposed context selection method with
that of the select-all method augmented with the choice of different precision thresholds for
contextual regions. The results are shown in Figure 2. We observe that with the increase
of precision threshold for contextual regions, the select-all method does perform better due
to reduced noise from contextual regions. The context selection method also consistently
improves as the precision threshold raises is raised from 0.1 to 0.5. Performance drops
when the precision threshold exceeds 0.5. At this point, too few relevant regions survive
the precision threshold. Generally, the context selection method outperforms the select-all
method with precision-threshold-based filtering.

Does the margin between For-and-Against upper-bounds help? Performance of con-
text selection methods that use only one of the For upper-bound, the Against upper-bound
and the margin between them are shown in Table 3. By ignoring the against evidence in
the FUB method, the confidence scores of true positives increase as expected, but the false
positives are also boosted higher. As we subtract the AUB from the FUB, we introduce
refuting evidence to balance the boosting effect, and reduce false positives. We observe a
performance gain of about ∼ 1.0% by combining the two upper-bounds together.

Does the selection model do more than select true positive contextual regions? Sec-
tion 3.2 illustrated the differential predictive power of contextual objects for a certain target
object. Ideally the context selection method should select contextual objects that exist in the
image and also have strong predictive power. To test that this is indeed occurring, we com-
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Figure 2: mAP v.s. Precision Threshold. Our proposed approach of contextual object se-
lection outperforms the straightforward approach of selecting the most confident contextual
objects by thresholding their confidence scores at various precision targets.

pare to the setting where an oracle labels the true positive contextual objects for the model to
choose from. We show the APs for the SA and the CS methods with oracle in both training
and testing phases in Table 4 and label them as SA-O and CS-O, respectively. For each target
object class and a given contextual object class i, we show the ratio between the counts of se-
lected true positive contextual objects in class i and the total number of contextual objects in
that class as the selecting ratio. The top five contextual objects that have the highest selecting
ratios of two target object classes are shown in Table 5 and 6. We notice that the selecting
ratios vary for different contextual object categories, and by selecting a subset of informative
contextual objects, the CS-O method outperforms the SA-O method. The performance of
CS-O is the upper-bound of the context selection model, and the proposed selection model
is a good approximation to the upper-bound.

Visualization of Selected contextual regions To visualize the performance of the con-
text selection method, we show the selected contextual regions for four target object classes
in Figure 3. The selection model tends to gather context information from the true positive
contextual regions that can provide strong supporting or refuting evidence to predict the label
of the target object. More visualizations can be found in the supplementary material.

bathtub bed book-
shelf

box chair counter desk door dresser garbage
bin

lamp monitor night
stand

pillow sink sofa table tv toilet mAP

CS 69.15 80.09 45.94 22.33 42.04 35.57 29.84 24.44 40.85 53.51 53.67 48.96 60.18 54.19 24.60 48.99 48.86 51.06 82.50 48.25
SA-O 70.07 78.95 45.48 23.29 42.91 36.97 33.59 24.37 42.39 52.44 52.78 49.15 61.81 53.38 26.49 53.44 48.71 49.16 81.73 48.79
CS-O 73.67 80.56 50.42 23.08 47.51 37.33 30.98 24.98 41.03 54.45 56.49 50.08 60.25 55.29 25.30 49.09 49.27 45.91 83.55 49.43

Table 4: Average Precision (AP) on SUN RGB-D Test Set: with Oracle. CS is the full con-
text model with selection that uses the margins between the two upper-bounds as confidence
scores. SA-O is the select-all model with an oracle which labels true positive contextual
regions. CS-O is the full context model with the oracle. The CS-O method outperforms the
SA-O by allowing to select informative context regions, and its performance can be viewed
as the upper-bound for the proposed CS model.

Table 5: Selecting Ratio: T = Pillow
bed sofa pillow night-

stand
lamp

Ratio 0.92 0.89 0.84 0.79 0.74

Table 6: Selecting Ratio: T = Bookshelf
desk table book-

shelf
chair sofa

Ratio 0.97 0.92 0.81 0.77 0.76
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Figure 3: Visualization of For-Against Context Selection We visualize the selected contex-
tual regions with the labels that have the highest appearance-based confidence scores among
all possible labels for four classes: bookshelf, desk, bathtub and tv. All figures are drawn
when the precision threshold for potential contextual regions is set as 0.4. The first two
columns show the selection results based on the FUB model and the last two columns are
the results from the AUB model. The yellow boxes are the target objects, the red boxes are
the selected contextual regions, and the blue dashed boxes are the ones that are not selected.

6 Conclusion

We analyzed the predictive potential of context in an idealized case where the labels of all
contextual objects are known, and only these labels and their relationships to the target ob-
jects are used to predict the target object label. Through these experiments we found that,
despite ignoring the appearance of the target object, pure context is effective at predicting
the target object. We also discovered that different categories vary in their ability to predict
a certain target object class. Based on these experiments, we proposed a region-based con-
text re-scoring method with dynamic context selection to automatically improve the pool of
contextual objects. Our method achieved significant performance gains when compared with
the appearance-based detector and the contextual model that simply selects everything. An
interesting direction of the future work is to use depth information as a contextual cue, and
apply context selection in an end-to-end deep learning framework.
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