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Abstract

Relative attribute represents the correlation degree of one attribute between an image
pair (e.g. one car image has more seat number than the other car image). While appear-
ance highly and directly correlated relative attribute is easy to predict, fine-grained or
appearance insensitive relative attribute prediction still remains as a challenging task.
To address this challenge, we propose a multi-task trainable deep neural networks by
incorporating an object’s both local context and global style information to infer the rela-
tive attribute. In particular, we leverage convolutional neural networks (CNNs) to extract
feature, followed by a ranking network to score the image pair. In CNNs, we treat fea-
tures arising from intermediate convolution layers and full connection layers in CNNs as
local context and global style information, respectively. Our intuition is that local con-
text corresponds to bottom-to-top localised visual difference and global style information
records high-level global subtle difference from a top-to-bottom scope between an im-
age pair. We concatenate them together to escalate overall performance of multi-task
relative attribute prediction. Finally, experimental results on 5 publicly available datasets
demonstrate that our proposed approach outperforms several other state-of-the-art meth-
ods and further achieves comparable results when comparing to very deep networks, like
152-ResNet [19] and inception-v3 [8].

1 Introduction

Attributes, a genre of human observable mid-level semantic property in an image, have re-
ceived much attention in recent years [13][1]. It describes an image in a more human un-
derstandable and preferable way. For instance, object, scene and action form an attribute
triple to describe an image semantically [2]. However, conventional visual attribute easily
collapses into categorical or binary since it merely indicates the presence/absence of one at-
tribute or which attribute an image part belongs to, few extra information goes beyond that.
It works well when handling simple tasks like classification, detection or recognition [25] but
it also easily falls short if more complex tasks or realistic applications come into mind. For
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example, seldom are consumers interested in the categorical property of each shoe in Fig.1
left, instead, they pick out the shoe to buy by comparing various attributes among shoe pairs.
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Figure 1: Left: among a bunch of shoe images, the “pointy” and “open” attributes are much
more easier to determine than “comfort” and “sporty” attributes. Middle: an image may
contain multiple attributes, these attributes are mutually intertwined and need to be compared
in a multi-task manner. Right: an object may represent various poses or viewpoints in an
image, in this case, local context alone often cannot handle this variation.

To fulfil those heterogenous requirements and diversify attribute properties, relative at-
tribute was introduced [36][11], it strides across the barrier of humdrum presence/absence
or yes/no description of an attribute to an entity (one-vs-one) and has dramatically enriched
attribute pool, enabling attributes to be meaningful in cross-entity domain and to mine more
meaningful information both mutually and individually. Relative attributes have been suc-
cessfully applied to a variety of tasks, including online image search and retrieval [3], zero-
shot learning [7][11]. Moreover, relative attribute predication is ubiquitous in our daily life,
an obvious example of this is that, if a customer owes a car with known attributes, he wants
to buy a new car with higher maximum speed, higher displacement, but low door number and
seat number. How can he directly retrieve the appropriate car from the car image pool? (see
Fig.1 Middle)

Current methods on relative attribute prediction almost unanimously follow the pipeline:
feature extraction and image ranking with these features. For feature extraction, hand-crafted
and engineered features, such as HOG[10] and GIST [4], as well as more discriminative
features learned by Convolutional Neural Networks (CNNs) are incorporated. As for the
ranking, D. Parish and K. Grauman [11] applied zero-short learning to learn a global linear
ranking function for each attribute. S. Li ef al. [27] trained hierarchical rankers with non-
linear functions. In [34], Y. Souri et al. combined convolutional neural networks (CNNs) and
RankNet [6] to directly rank each attribute individually. These approaches, however, build
on two main assumptions. The first one is that relative attribute has inherent correlations
with image’s visual appearance and visual difference between an image pair trustworthily
corresponds to relative attribute strength. The visually difference can be perfectly modelled
by either hand-crafted features [11][36] or single-path CNNs. The second one is that all rela-
tive attributes are individually independent. They did not take intra relative attributes mutual
effects into account. We argue that relative attributes are heavily influenced by each other
and they can be multi-task behaviourally modelled and predicted. An obvious example is
that higher maximum speed attribute car often occupies higher displacement attribute, and
further, these two attributes are reflected by the visual appearance of seat number and door
number in the car image (see Fig.1 Middle). The first assumption works well on simple
dataset, but often fails to accommodate cases in which more abstract or appearance insen-
sitive attributes are involved. For example, though it is easy to infer which shoe is more
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“pointy" than the other one because “pointy” feature mostly localises around shoe’s heel, we
can hardly specify which part of the query image determines “comfort” “sporty” relative at-
tribute strength since they virtually invisible and require analysis over the whole image (see
Fig. 1 Left). What’s more, visual appearance is not always reliable, pose variation or view-
point difference often generate different visual appearance for the same attributes. Thus, a
more robust way to address this problem is to involve more powerful feature taking both lo-
cal and global information into account, and harness the mutual influence between different
attributes.

Therefore, we propose a multi-task relative attribute prediction framework which in-
corporates both local context and global style information. Our intuition is that the rel-
ative attributes emerge from both local context and image global information (we call it
global style information), both of them can be used to assist relative attribute prediction.
We leverage both intermediate layers (local context) and full connection layers (global style
information), and concatenate them together to form final image feature vector. Current
work [5][14][37][12][30][26] demonstrate that features arising from intermediate CNNs lay-
ers escalate various tasks at a large scale by simply concatenating them together [5], or re-
shaping them to an uniform shape [14] or encoding them via other methods [37][26], like
VLAD[17]. S. Liu et al. [28] and F. Yang et al. [12] show that intermediate layers delineate
mid-level feature (motif, object, semantics), while later layers represent high-level and more
abstract features. We follow these two arguments and propose a special CNNs architecture,
which automatically aggregates features from both intermediate layers and final layers to
capture both local context and global style information to improve relative attribute predic-
tion. After feature representation, another ranking network is grafted to CNNs to directly
rank each attribute. What’s more, we take intra effect among various relative attributes into
consideration and formulate our framework to model multi-task relative attributes simultane-
ously. Currently, harnessing deep learning methods to achieve multi-task attributes learning
have been successfully explored [29][15][21]. We build on them to embrace CNNs to learn
multi-task relative attribute prediction.

The main contributions of this paper lie in 1) we construct a multi-task trainable deep
neural networks to formulate relative attribute prediction problem, which is able to predict
multiple relative attributes at the same time. 2) we embrace both local context and global
style information to infer relative attributes, and take the advantage of different layers of
CNNss to extract features. 3) Our proposed methods achieve impressive result in both ap-
pearance sensitive and fine-grained relative attribute prediction tasks, comparing with very
deep neural networks.

2 Relative Attribute Prediction via Ranking

Our proposed framework follows the pipeline shown in Fig. 2. Given a set of image pairs
{{I,IL}]i € {1 2,--+,n}}, and their corresponding relative attributes label {/;|i € {1,2, -
nkke{l,2,--- K }} where I} = {0,0.5,1.0} indicates the strength of relative attribute ak
of image I} over image I5. We designate 0, 0.5 and 1.0 to be less, equal, more of the relative
attribute, respectlvely Suppose that we have trained an image feature extractor f, f converts
image pairs set into feature vector sets {{y{,yi}|i € {1,2,---,n}}, our goal is to find a
ranking function R which ranks feature vectors according the input labels

RUID >R if L=1, RI)=R(I) iflL=05; R(I) <R iflL=0 (1)
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Figure 2: The pipeline of our proposed framework: we feed the image pair to two CNNs
with the same network architecture and shared parameters. Features learned by CNNs in-
termediate layers and final several full connection layers, which are deemed to store global
context and global style information, respectively, are concatenated together to form the final
feature. The feature pair is further fed to the ranking layer to score each attribute.

In order to make our model end-to-end trainable, we leverage the ranking network proposed
in [6] because it can be trained with gradient descent approach. It directly maps the input
feature vector to k real value pairs {(vi,v5)]i € {1,2,---,K}}, each of which corresponds
to a relative attribute. We calculate the posterior probability for each relative attribute and
squash it between [0 — 1] via a sigmoid function.

1
T et ?
Finally, we utilise cross entropy loss to rank each relative attribute as follows
K . )
Z ilog(Pf5) — (1 — 1) log(—Pf,) 3)

Note that by minimising the cross entropy loss in Eqn.3, we can force the whole neural
network to learn discriminative image features so that they are compatible with the given
multiple relative attributes ordering. Note that the feature vector learned by CNNs is mapped
to a real value (for single relative attribute prediction) or a real value vector (for multi-task
relative attribute prediction) through a mapping matrix W and a bias term b: v=W -y + b.

3 Feature Learning by incorporating Local Context and
Global Style Information

We embrace the power of CNNss to learn features as they have shown state-of-the-art perfor-
mance on various vision related tasks [16][9]. CNNs excel at learning discriminative features
at various granularities. Current researches in CNNs related vision tasks either try to build
much deeper neural networks as various experiments on large public datasets shows that
deeper network enables to model to learn more robust and discriminative features [19][18],
yet it is time-consuming and requires multiple powerful machines to train the model, or fully
exploit intermediate layer features to improve overall performance [5][14][37]. Rather than
delving into very deep neural networks, we are more interested in improving relative attribute
prediction accuracy merely from relatively shallow neural networks but leverage both local



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 5

Sportlily elegant and dynamic aerodynamic principles and streamlined design
BMW Mercedes-Benz

Figure 3: Style information of BMW and Mercedes-Benz. While BMW emphasizes
on sporty elegance and dynamics, Mercedes-benz highlights aerodynamic principles and
streamlined outlook. We call these abstract and manufacturer unique characteristic global
style information.

context and global style information carried by the neural network. This is desirable because
it is both time and training hardware cost-effective.

As CNNs learn feature through a coarse-to-fine or concrete-to-abstract process, we can
safely assume that while the earliest layers capture low-level and basic features (e.g. edges,
contours or texture), intermediate layers records mid-level feature, such as motifs, object and
semantics, the last few layers are responsible for extracting high-level, global and abstract
information [5][37][12]. We build on these theories and propose to combine features from in-
termediate layers and last two full connection layers. So intermediate layers and the last few
layers capture local context and global style information, respectively. Our intuition is that
relative attributes stem from both local context and global style information. Local context is
bottom-to-top and corresponds to appearance sensitive attributes. For example, we can eas-
ily decide which shoe is “pointy” than the other shoe simply by its hell height metric. Global
style information is top-to-bottom and corresponds to high-level semantics, which escalates
fine-grained or large pose variational relative attribute prediction. Besides, global style in-
formation is prevalent in product manufacturing industry. Each manufacturer has its own
unique design philosophy, which is blended into its product’s sophisticated design feature
and overall outlook. For example, automobiles designed from BMW look sportily elegant
and dynamic, this character is manifested by automobiles’ sophisticated overall modelled
surface, like short overhangs, long bonnet and wheelbase. On the contrary, Mercedes-benz
highlights aerodynamic principles and streamlined elements in its automobile (See Fig.3).
We call these abstract global semantics as “style information” and it has strong correlation
with internal relative attributes. Experts can easily decide what type of the car it is after tak-
ing a glance at the car’s image and further, and compare their relative attributes among a pool
of car pairs. We utilise this property to incorporate “global style” expert-like information into
our process. Thus, our feature learning process works as

l//i = W]l‘c + l//liocal + Vfélobal 4

where fc indicates the last full connection layer. y indicates the final concatenated learned
feature vector. ‘V;,;l obg Ndicates the penultimate full connections layer and ll/lio oo Indicates
the intermediate convolution layer. We extract these features and reshape them into a vector,
and then concatenate them together to form one whole vector, serving as the final image
feature. The final feature vector is further fed to ranking layer for relative attribute ranking
by mapping the feature vector to a real value (or a real value vector) with a matrix W and
bias b.

In general, as shown in Fig. 2, given an image pair, we train them with two CNNs archi-
tectures. The two CNNs architectures share the same structures as well as parameters. The
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Attributes [ Max. Speed | Displacement
Viewpoint NoView F R S FS RS No F R S FS RS
ReAtr[11] 43.22 47.33 4533 48.01 46.37 46.20 40.39 40.82 40.11 43.09 4322 40.10
LoLe[36] 46.32 47.74 46.11 47.68 47.99 47.00 42.77 43.11 43.00 44.09 43.98 43.11
DepRe[34] 5233 54.27 51.28 55.01 52.09 51.07 58.33 49.32 48.27 49.57 48.97 48.30
NaPa[35] 42.13 42.78 42.10 41.07 45.78 44.23 42.78 43.11 43.90 43.27 43.17 4391
152-ResNet[19] 55.14 57.28 56.10 56.78 58.22 57.77 49.10 49.01 47.82 49.92 49.72 48.00
inception-v3[8] 54.19 56.29 54.78 57.20 57.38 57.00 49.31 49.57 48.87 49.37 49.27 48.38
Ours_indiv 46.78 46.92 43.27 50.33 48.00 48.71 44.20 43.82 44.78 42.10 41.10 44.78
Ours_none 51.20 53.18 52.77 52.78 49.03 48.77 46.78 47.23 46.32 47.07 47.00 46.69
Ours_local 52.13 53.11 51.34 53.07 52.01 52.00 48.32 48.10 47.29 48.01 47.77 47.38
Ours_global 53.07 54.78 53.10 54.09 54.22 53.00 48.77 48.97 47.88 47.79 47.29 48.00
Ours_total 55.07 56.26 55.78 56.34 55.78 55.21 50.01 49.79 49.80 50.32 50.37 50.11
Attributes [ Door Number | Seat Number
Viewpoint NoView F R S FS RS No F R S ES RS
ReAtr[11] 67.72 53.20 50.00 88.90 86.71 84.20 60.38 62.33 63.74 63.37 61.00 59.78
LoLe[36] 66.32 50.19 49.32 87.32 84.28 83.77 59.11 61.22 63.00 63.12 61.00 58.78
DeepRe[34] 77.19 60.32 60.47 93.01 87.77 85.78 75.00 69.38 67.29 87.00 83.00 88.27
NaPa[35] 69.00 51.22 51.01 86.78 84.04 85.99 58.99 60.18 62.99 60.98 63.00 60.00
152-ResNet[19] 78.10 62.22 61.89 94.37 89.76 88.39 78.22 73.00 68.88 89.00 85.32 89.90
inception-v3[8] 77.79 61.10 60.88 94.00 88.72 87.35 79.00 74.00 69.11 88.88 84.34 87.78
Ours_indiv 75.22 61.11 51.00 90.00 88.27 85.43 76.01 72.89 65.19 82.11 84.10 85.18
Ours_none 75.31 61.00 52.11 91.00 88.27 85.34 76.66 73.10 65.22 84.00 84.11 85.29
Ours_local 75.99 62.10 54.09 91.87 88.67 86.56 76.32 72.99 66.89 85.90 85.00 86.04
Ours_global 76.10 62.22 53.10 92.11 88.33 86.78 76.80 73.28 65.78 84.99 84.33 86.00
Ours_total 82.41 70.01 63.10 94.11 89.00 87.22 80.14 73.90 65.78 86.98 85.40 89.30

Table 1: Result on CompCar [22] dataset. (%)

learned features, containing local context and global style information, are further put into
ranking layer to score all relative attributes.

4 Experiment

We implement our method in open-source Caffe [33] deep learning framework. To augment
train data, we apply various data augmentation methods, such as vignetting, casting, random
crop and rotation to get more training data. We deploy Microsoft 34-layer residual network
with identity mapping [19] and have pre-trained it on ILSVRC 2014 dataset [23]. During
training, we use stochastic gradient descent with RMSProb [31] to fine-tune the parameters
w.r.t. different relative attributes prediction tasks. Besides, we set the minibatch size as 64
and the learning rate as 1072. We also apply [, regularisation and weight w and bias b are
initialised by Xavier [32] and 0, respectively. All models are trained on 4 Nvidia Titan X.
To quantitatively and comprehensively evaluate our proposed method, we conduct ex-
periment on five publicly available datasets: CompCar [22], ZapposS0K [36], LFW-10 [24],
PubFig and OSR [11]. We mostly focus on CompCar [22] dataset because each car image
contains 4 attributes: maximum speed, displacement, door number and seat number. Be-
sides, extra metadata, including five viewpoints: front (F), rear (R), side (S), front-side (FS)
and rear-side (RS) viewpoint. This allows us to model multi-task relative attribute predic-
tion and further investigate the impact of pose and viewpoint variation on relative attributes.
Zappos50K [36] contains commercial shoes for both coarse and fine-grained relative attribute
comparison, each of them is associated with one or more attributes from a total of 4 attributes:
open, comfort, pointy and sporty. LFW-10[24] contains 2,000 face images and 10 attributes
are available for comparison (note that not every image associates with 10 attributes). Pub-
Fig [11] consists of 800 face images and OSR [11] consists of 2,688 outdoor scene images.
We report mean accuracy of the percentage of correctly ordered image pairs as the evaluation
metric, as adopted by other relevant methods [11][36][24][34][35]. To validate the involve-
ment of local context and global style information indeed improves relative attribute predic-
tion, we compare our algorithm from four perspectives: without local context or global style
information (Ours_none), with only local context (Ours_local), with only global style infor-
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Figure 4: Experimental result samples on 5 datasets and their corresponding saliency map.
In CompCar dataset, the four saliency maps are maximum speed, displacement, door number
and seat number, respectively. (from left to right). Note that the black car shows more max.
speed, less displacement and equal door number and seat number than the red car.

mation (Ours_global) and with both local context and global style information (Ours_total).
We compare our algorithm with four other algorithms: hand-crafted feature based meth-
ods: ReAtr[11], LoLe [36] and NaPa [35], and CNNs based methods: DepRe [34]. Recent
study shows that deeper network learns more discriminative feature [19][18]. In order to test
whether our proposed framework enables shallows neural network to achieve comparable
result when comparing to very deep neural network by incorporating both local context and
global style information presented in this paper, we trained another two very deep neural
networks that currently have achieved state-of-the-art performance in various vision tasks:
152 residual network (152-ResNet) [19] and google inception-v3 [8], for fair comparison.
152-ResNet with identity mapping [ 18] enables earlier learned localised features to directly
flow to any deep layer, and inception-v3 percepts an image at various scales. Therefore, we
assume both of them automatically learn local context and global style information.

CompCar [22] dataset used here contains a total of 136,727 web-nature images, covering
161 car makers and 1,687 car models. We conducted two experiments in CompCar dataset.
In the first one, we neglect the viewpoint variation and has randomly created 46,869 image
pairs. We split it into 38,000 for train, 2,000 for validation and 6,869 for testing, respectively.
In the second experiment, we take viewpoint variation into consideration and separately
conduct experiment for front view (F), rear view (R), side view (S), font-side view (FS) and
rear-side view (RS), respectively. Besides, in order to test whether our proposed multi-task
framework outperforms modelling each relative attribute separately, we have also separately
trained models to predict each relative attribute individually (Ours_indiv). We fine-tune with
Microsoft 34-layer residual network pre-trained on ILSVRC 2014 dataset [23] with identity
mapping [19][18]. The accuracy result is reported in Table 1. We can see that CNNs based
methods [34][19][8], including our proposed method, outperform hand-crafted feature based
methods ReAtr [11], LolLe [36] and NaPa [35] by a large margin, demonstrating the power-
ful CNNss to learn discriminative feature for relative attribute prediction. Relative attributes
“maximum speed” and “displacement” suffer most in relative attribute separately-trained
situation, with an average of 10 percent prediction accuracy less than multi-task training
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Dataset [ Zappos50K-1 | Zappos50K-2
Attribute Open Sporty Comfort Pointy Mean Open Sporty Comfort Pointy Mean
ReAtr[11] 87.71 91.20 89.93 89.37 89.57 60.18 62.70 64.04 59.56 61.62
LoLe[36] 90.67 92.67 92.37 90.83 91.64 71.91 64.54 62.51 63.74 66.43
DeepRe[34] 93.00 95.56 93.22 92.11 93.47 71.21 67.81 65.88 66.64 67.88
Napa[35] 63.10 61.55 62.33 60.13 61.78 76.20 64.80 63.60 65.30 67.50
152-ResNet[19] 95.14 95.77 93.74 93.11 94.44 72.22 69.34 66.34 69.39 70.33
inception-v3[8] 95.33 96.30 94.01 92.00 94.41 71.22 68.99 67.03 68.32 68.42
Ours_none 93.10 95.07 93.55 93.12 93.71 71.30 68.03 69.72 66.98 69.01
Ours_local 94.10 95.10 93.57 95.38 94.54 73.12 68.13 69.80 71.33 70.60
Ours_global 93.98 97.13 95.44 94.39 95.24 73.92 70.32 70.99 69.98 71.30
Ours_total 95.50 97.56 96.00 95.98 96.26 74.10 71.92 71.34 69.99 71.84

Table 2: Result on Zappos [36] dataset. (%)

scheme. The reason is that “maximum speed” and ‘“displacement” of a car show little cor-
relation with car’s visual appearance, and it is somewhat difficult to predict them merely
from visual information. However, involving other appearance sensitive attributes such as
“door number” and ‘“‘seat number” greatly aid the two attributes prediction because they
are positively correlated with each other. Besides, involving local context or global style
information do escalate overall performance when comparing to using single-path CNN5s
alone (Ours_indiv), which shows that local context and global style information extracted
from CNNs intermediate layers are very important to escalate relative attribute prediction.
In general, our proposed strategy which uses relative shallow CNNs by incorporating local
context and global style information achieves state-of-the-art results when comparing with
several other relevant methods, and also achieves competitive results comparing with cur-
rent most powerful very deep neural network 152-ResNet [19] and Google inception-v3 [8].
Moreover, we find that “maximum speed” and “displacement” show subtle difference w.r.t
viewpoint variation, but “door number” and “seat number” relative attributes can be best
predicted from S, FS and RS viewpoint. This is easy to understand because a side relative
viewpoint reveals the maximum part of a car’s doors or seats.

We want to figure out which part of a car image corresponds to the attribute we are
modelling. To this end, we adopt the method [20] to visualise the saliency map of each
attribute. As is shown in Fig. 4, we can clearly see that while “door number” and “seat
number” mainly lie close to car’s window and door area, which correspond to local context
discussed in this paper, the extra 2 attributes “maximum speed” and “displacement” lie across
the whole car torso, which indicates the global style information. This again demonstrates
the importance of involving both local context and global style information to predict relative
attributes.

ZapposS0K [36] is collection of dataset of 50,025 shoe catalog images from Zappos.com
and relative labels of 4 attributes: open, sporty, comfort and pointy. It contains two sub-
datasets: coarse and relatively simple dataset Zappos50K-1, containing approximately 1,500
annotated image pairs, fine-grained and hard dataset Zappos5S0K-2 with approximately 4,300
pairs. The result is shown in Table 2, from which we can see that our proposed framework
outperforms other methods by a large margin in both coarse and fine-grained dataset. In-
volving local context specially improves “open” and “pointy” relative attributes prediction.
Incorporating global style information mainly escalates more abstract relative attributes pre-
diction, such as “comfort” and “sporty”. It is naturally easy to understand this phenomena
because, as we discussed above, global style information mainly corresponds to abstract and
high-level feature and local context specifies more localised feature.

LFW-10 [24] has a total of 2,000 face images and 10 attributes in total. In our exper-
iment, we have found about 500 image pairs for each attribute. PubFig[11] contains 800
face images of celebrates and a total of 11 attributes. OSR [11] consists of more than 2,500
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Attribute Bald DkHair Eyes GdLook Mascu Mouth Smile Teeth FrHead Young Mean
ReAtr[11] 70.4 757 52.6 68.4 71.3 55.0 54.6 56.0 64.5 65.8 63.4
LoLe[36] 67.9 73.6 49.6 64.7 70.1 53.4 59.7 535 65.6 66.2 62.4
DeepRe[34] 81.27 88.92 91.98 72.03 95.40 89.04 84.75 89.33 84.11 73.35 85.02
Napa[35] 78.8 72.4 70.7 67.6 84.5 67.8 67.4 71.7 79.3 68.4 72.9
152-ResNet[19] 82.33 89.94 92.33 75.04 96.00 89.10 84.77 92.34 85.72 74.40 86.28
inception-v3[8] 83.00 90.11 92.00 76.21 95.78 89.33 85.72 93.27 85.79 75.20 86.63
Ours_none 82.33 89.01 91.39 72.04 95.67 89.09 84.80 89.35 84.11 73.72 85.15
Ours_local 82.30 88.72 92.90 72.05 95.92 91.01 85.00 92.33 84.33 73.20 85.74
Ours_global 82.72 89.94 91.90 75.06 97.70 89.07 86.20 89.53 85.78 75.35 86.33
Ours_total 83.09 90.01 93.14 75.70 97.93 89.12 89.50 85.89 86.11 75.58 86.60

Table 3: Result on LFW-10[24] dataset. (%)

Attribute Natural Open Perspective Large Size Diag ClsDepth Mean
ReAtr[11] 95.03 90.77 86.73 86.23 86.50 87.53 88.80
LoLe[36] 95.70 94.10 90.43 91.10 9243 90.47 92.37
DeepRe[34] 97.96 94.48 92.37 92.70 95.14 91.44 93.98
Napa[35] 94.98 92.32 91.98 92.717 95.10 91.67 93.14
152-ResNet[19] 98.80 96.77 92.58 94.74 96.34 93.10 95.39
inception-v3[8] 99.10 97.71 91.00 95.12 97.10 92.30 95.39
Ours_none 97.00 93.92 92.48 92.78 96.30 91.98 94.08
Ours_local 98.02 94.52 93.27 92.50 96.00 92.00 94.66
Ours_global 98.45 96.00 93.64 94.01 96.88 91.86 95.14
Ours_total 98.91 96.32 94.20 94.93 97.01 92.29 95.62

Table 4: Result on OSR [11] dataset. (%)

outdoor scene images, with 6 relative attributes. We follow the pre-defined train/test split of
both PubFig and OSR datasets. LFW-10 result is given in Table 3. Similarly, we can observe
that local features extracted from CNNs intermediate layers improves most in more localised
and specified relative attribute prediction, for example, the “teeth”, “eyes” and “bald”. Other
more abstract attributes such as “young”, “good look™ and “masculine” benefit most from
involving global style information. The results of OSR dataset[11] and PubFig dataset [11]
are given in Table 4 and Table 5, respectively. They represent similar experimental results
with ZapposSK and LFW-10 dataset. That is, our proposed framework achieves state-of-the-
art performance in almost all relative attribute prediction tasks. Note that in PubFig dataset,
our methods performs slightly inferior to inception-v3. We think the reason is that “young”
attribute requires much deeper neural network to comprehensively represent it. Global style
information extracted from shallow CNNs cannot completely capture the global “young” in-
formation. Again, we can clearly see the saliency map of each attribute on all datasets in
Fig. 4, which help us to intuitively understand local context and global style information.

In sum, our proposed relative attribute prediction framework shows impressive perfor-
mance on all the 5 publicly available datasets, which contain various scenarios, including
indoor, outdoor, face, car, natural and human-designed images. The incorporation of local
context and global style information defined in this paper enables our framework to suc-
cessfully handle both coarse and fine-grained, even large pose variations relative attribute
prediction tasks. Besides, it is noteworthy to note that our proposed framework achieves
comparable results comparing with current popular very deep neural networks. Since very
deep neural networks are time-consuming and require powerful machines to train, our frame-
work is cost-effective and time-effective.

5 Conclusion

We proposed a novel framework for relative attribute prediction. We build on CNNs and
exploit its intermediate layers to force CNNs to learn local context and global style infor-
mation, both of which are demonstrated to improve a lot on both coarse and fine-grained,
pose-variational relative attribute prediction. Future work includes research on much more
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Attribute Male White Young Smiling Chubby Forehead Eyebrow Eye Nose Lip Face Mean
ReAtr[11] 81.80 76.97 83.20 79.90 76.27 87.60 79.87 81.67 77.40 79.17 82.33 80.53
LoLe[36] 91.77 87.43 91.87 87.00 87.37 94.00 89.83 91.40 89.07 90.43 86.70 89.72
DeepRe[34] 90.10 89.49 89.83 88.62 88.72 92.33 88.13 86.94 86.30 89.79 92.71 89.36
Napa[35] 82.10 78.21 83.90 78.00 76.33 86.98 79.72 80.69 75.98 79.99 83.00 80.45
152-ResNet[19] 92.33 89.99 91.30 90.03 89.00 91.11 89.47 88.94 87.34 91.09 93.11 90.59
inception-v3[8] 91.87 88.22 91.78 90.92 88.97 92.00 89.92 88.68 89.00 90.09 93.08 90.41
Ours_none 90.11 89.33 91.00 88.99 88.98 93.19 89.10 85.99 86.78 90.79 93.00 89.75
Ours_local 89.10 90.20 91.00 89.34 89.28 92.18 90.34 90.72 87.39 91.00 92.88 89.94
Ours_global 91.00 90.38 91.09 90.00 89.55 92.78 89.00 86.69 87.32 91.72 93.12 90.24
Ours_total 92.39 90.75 91.10 90.24 93.00 93.00 91.78 87.62 88.38 92.84 93.22 91.28

Table 5: Result on PubFig[11] dataset. (%)

deeper network architectures’ performance on relative attribute prediction, and experiments
on other intermediate feature encoding methods.
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