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Most recent approaches to monocular 3D pose estimation rely on Deep
Learning. They either train a Convolutional Neural Network to directly
regress from image to 3D pose [3], which ignores the dependencies be-
tween human joints, or model these dependencies via a max-margin struc-
tured learning framework [4], which involves a high computational cost
at inference time. In this paper, we introduce a Deep Learning regression
architecture for structured prediction of 3D pose from monocular images
that relies on an overcomplete auto-encoder to learn a high-dimensional
latent pose representation and account for joint dependencies.
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Figure 1: (a) An overcomplete denoising auto-encoder is trained. (b) A
CNN is mapped into the latent representation learned by the auto-encoder.
(c) The latent representation is mapped back to the original pose space
using the decoder.

For this purpose, we first train an overcomplete auto-encoder that
projects joint positions to a high dimensional space represented by its
middle layer, as depicted by Fig. 1(a). We then learn a CNN-based map-
ping from the input image to this high-dimensional pose representation
as shown in Fig. 1(b). This is inspired by Kernel Dependency Estima-
tion (KDE) [2, 5], which maps both input and output to high-dimensional
Hilbert spaces via kernel functions and learns a mapping between these
spaces. In that, it can be understood as replacing kernels by the auto-
encoder layers to predict the pose parameters in a high dimensional space
that encodes complex dependencies between different body parts. As a
result, it enforces implicit constraints on the human pose, preserves the
body statistics, and improves prediction accuracy. Finally, as in Fig. 1(c),
we connect the decoding layers of the auto-encoder to this network, and
fine-tune the whole model for pose estimation. Our contribution is to
show that combining traditional CNNs for supervised learning with auto-
encoders for structured learning preserves the power of CNNs while also
accounting for dependencies, resulting in increased performance.

Using Auto-Encoders to Learn Structured Latent Representations:
We use a denoising auto-encoder that can have one or more hidden layers
to model the dependencies between joints. We train our auto-encoder to
take as input a noisy pose vector, ỹ, and return a denoised y as output.

To learn the network parameters, θae, we rely on minimizing the
square loss between the reconstruction obtained by the auto-encoder map-
ping function, fae(ỹ,θae), and the original input, y, over the N training
examples. To increase robustness to small pose changes, we regularize
the cost function by adding the squared Frobenius norm of the Jacobian
of the hidden mapping g(·), that is, J(ỹ) = ∂g

∂ ỹ (ỹ) where g(·) is the encod-
ing function that maps the noisy input ỹ to the middle hidden layer, hL.
Training can thus be expressed as finding

θ
∗
ae = argmin

θae

N

∑
i
||yi− fae(ỹi,θae)||22 +λ‖J(ỹi)‖2

F , (1)

where λ is the regularization weight. Unlike when using KDE, we do not
need to solve a complex pre-image problem to go from the latent pose
representation to the pose itself. This mapping, which corresponds to the
decoding part of our auto-encoder, is learned directly from data.
∗ indicates equal contribution

Regression in Latent Space: Once the auto-encoder is trained, we aim
to learn a mapping between the image and the latent representation of the
human pose. To this end, we make use of a CNN to regress the image,
x, to the high-dimensional representation that was previously learned by
the auto-encoder, hL, with a mapping function fcnn(·). Given N training
examples, learning amounts to finding the model parameters, θcnn, by

θ
∗
cnn = argmin

θcnn

N

∑
i
|| fcnn(xi,θcnn)−hL,i||22 . (2)

Fine-Tuning the Whole Network: Finally, as shown in Fig. 1(c), we
append the decoding layers of the auto-encoder to the CNN discussed
above, which reprojects the latent pose estimates to the original pose
space. We then fine-tune the resulting complete network for the task of
human pose estimation. Denoting the complete set of model parameters
by θ f t , and the mapping function by f f t(·), we minimize the squared dif-
ference between the predicted and ground-truth 3D poses.

θ
∗
f t = argmin

θ f t

N

∑
i
|| f f t(xi,θ f t)− yi||22 . (3)

Results: We evaluate our method on the Human3.6m dataset [2] and
report our results along with three state-of-the-art approaches [2, 3, 4] in
Table 1. Our method consistently outperforms all the baselines. Fig. 2
depicts example pose estimation results on Human3.6m.

Following [1], we show in Table 2 the differences between the
ground-truth limb ratios and the limb ratios obtained from predictions
based on KDE, CNN regression and our approach. These results evi-
dence that our predictions better preserve these limb ratios, and thus better
model the dependencies between joints.

Figure 2: Example 3D pose estimation results of our approach. First
skeleton depicts the ground-truth pose and the second one our prediction.

Model Discussion Eating Greeting Taking Photo Walking Walking Dog

LinKDE( [2] 183.09 132.50 162.27 206.45 97.07 177.84
DconvMP-HML [3] 148.79 104.01 127.17 189.08 77.60 146.59
StructNet-Max [4] 149.09 109.93 136.90 179.92 83.64 147.24
StructNet-Avg [4] 134.13 97.37 122.33 166.15 68.51 132.51
OURS 129.06 91.43 121.68 162.17 65.75 130.53

Table 1: Average Euclidean distance in mm between the ground-truth 3D
joint locations and those predicted by [2, 3, 4] and ours.

Model Lower Body Upper Body Full Body

KDE [2] 1.02 7.18 16.43
CNN 0.57 6.86 14.97
OURS no FT 0.62 5.30 11.99
OURS with FT 0.77 5.43 11.90

Table 2: Sum of the log of limb length ratio errors for different parts of
the human body.
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