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Abstract

Tracking Facial Points in unconstrained videos is challenging due to the non-rigid
deformation that changes over time. In this paper, we propose to exploit incremental
learning for person-specific alignment in wild conditions. Our approach takes advantage
of part-based representation and cascade regression for robust and efficient alignment on
each frame. Unlike existing methods that usually rely on models trained offline, we in-
crementally update the representation subspace and the cascade of regressors in a unified
framework to achieve personalized modeling on the fly. To alleviate the drifting issue,
the fitting results are evaluated using a deep neural network, where well-aligned faces
are picked out to incrementally update the representation and fitting models. Both image
and video datasets are employed to valid the proposed method. The results demonstrate
the superior performance of our approach compared with existing approaches in terms of
fitting accuracy and efficiency.

1 Introduction
Fitting facial landmarks on sequential images plays a fundamental role in many computer
vision tasks, such as face recognition [20, 34], expression analysis [12, 18], and facial unit
detection [40, 43]. It is a challenging task since the face undergoes drastic non-rigid de-
formations caused by extensive pose and expression variations, as well as unconstrained
imaging conditions like illuminations changes and partial occlusions.

Despite the long history of research in rigid and non-rigid face tracking [4, 21], current
efforts have mostly focused on face alignment on a single image [6, 29, 32, 36, 39, 44, 46,
47, 48, 49]. They have shown great success with impressive results in standard benchmark
datasets [27, 45]. However, when it comes to sequential images, many of them suffer from
significant performance degradation especially in real-world scenarios under wild conditions
[30]. They usually rely on models trained offline on still images and perform sequential
alignment in a tracking-by-detection manner [7, 30, 35]. They lack the capability to capture
neither the specifics of the tracked subject nor the imaging continuity in successive frames.
To this end, personalized modeling rather than generic detection is preferred.
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One rational way to achieve personalized modeling is to perform joint face alignment
[25, 28], which takes the advantage of the shape and appearance consistency in a sequence to
minimize fitting errors of all frames at the same time. However, these methods are restricted
to offline tasks since they usually require all images are available before image congealing
[25]. They also suffer from low-efficiency issue which severely impedes their performance
on real-time or large-scale tasks [24].

To avoid these limitations, other approaches attempt to incrementally construct person-
alized models instead of joint alignment. They either adapt the holistic face representation
using incremental subspace learning [33] or update the cascade mapping using online re-
gression [1]. However, how to jointly update the both in a unified framework still remains
an open question without investigation. Besides, former approaches often employ holistic
models to facilitate the adaptation [33], which is inferior to part-based models in challeng-
ing conditions [29, 49]. Moreover, many of them attempt to achieve personalized modeling
without correction, which may inevitably result in model drifting.

In this paper, we further exploit person-specific modeling for sequential face alignment
to address aforementioned issues. We first learn the part-based representation to model the
facial shape and appearance respectively, as well as a cascade of nonlinear mappings from
the facial appearance to the shape. The representation subspace and mapping parameters are
then incrementally updated in a unified framework to achieve personalized modeling on the
fly. In summary, our work makes the following contributions:

• We propose a novel approach for sequential face alignment. The person-specific mod-
eling is investigated by incrementally learning the representation subspace and the
cascade of regressors in a unified framework.

• The proposed part-based representation together with the cascade regression guaran-
tees robust alignment in unconstrained conditions. More importantly, they are crucial
to efficiently construct personalized models for real-time or large-scale applications.

• We propose to leverage deep neural networks for efficient and robust fitting evaluation.
It significantly alleviates the drifting issue which would severely deteriorate learned
models and inevitably lead to failure.

To fully evaluate the performance of our approach, we employed both image and video
datasets in the experiments and compared our method with the state of the arts in terms
of fitting accuracy and efficiency. We conducted detailed experimental analysis to validate
each component of our approach. The results demonstrate that the proposed incremental
learning can significantly improve the fitting accuracy with an affordable computational cost,
especially in unconstrained videos with extensive variations.

2 Related Work
Face alignment in a single image has attracted intensive research interest for decades. Gener-
ally speaking, existing methods usually accomplish the task by learning a nonlinear mapping,
which can be either regressors [39, 44, 48] or neural networks [32, 46, 47], from the facial
representation, which is either holistic [5, 9] or part-based [29, 49], to landmark coordinates.

It has been proved that the part-based rather than the holistic representation is more ro-
bust to the extensive variations in unconstrained settings. For instance, Saragih et al. [29]
proposed the regularized landmark mean-shift (RLMS) to maximize the joint probability of
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the reconstructed shape based on a set of response maps extracted around each landmark us-
ing expectation maximization. Asthana et al. [2] proposed the discriminative response map
fitting (DRMF) to learn boosted mappings from the joint response maps to shape parameters.
Cao et al. [6] combined a two-level regression to achieve explicit shape regression (ESR)
using shape-indexed features. Xiong et al. [44] proposed supervised descent method (SDM)
to learn a sequence of descent directions using nonlinear least squares.

More recently, deep neural networks (DNNs) based methods have made significant progress
towards systems that work in real-world scenarios [37, 38]. For example, Sun et al. [32]
proposed to concatenate three-level convolutional neural networks to refine the fitting results
from the initial estimation. Zhang et al. [46] employed the similar idea of the coarse-to-fine
framework but using auto-encoder networks instead of CNNs. Zhang et al. [47] showed that
learning face alignment together with other correlated tasks, such as identity recognition and
pose estimation, can improve the landmark detection accuracy.

The aforementioned methods have shown impressive results in standard benchmark datasets
[27]. However, they still suffer from limited performance in the sequential task as they com-
pletely rely on static models trained offline. To address this limitation, efforts of constructing
person-specific models are made to improve the performance of sequential face alignment.

Some of them achieve person-specific modeling via joint face alignment. A represen-
tative example was proposed in [28], which used a clean face subspace trained offline to
minimize fitting errors of all frames at the same time. However, these methods are usually
limited to offline tasks due to their intensive computational costs. Others attempt to incre-
mentally construct personalized models on the fly. For instance, Sung et al. [33] proposed
to employ incremental principle component analysis to adapt the holistic AAMs to achieve
personalized representation. Asthana et al. [1] further explored SDM in incremental face
alignment (IFA) by simultaneously updating regressors in the cascade using incremental
least squares. However, faithful personalized models can hardly be achieved without joint
adaptation of the representation and fitting models in a unified framework. More importantly,
blind model adaptation without correction would inevitably result in model drifting. How
to effectively detect misalignment is still a challenging question that is seldom investigated.
To address this issue, we propose a deep neural network for robust fitting evaluation to pick
out well-aligned faces from misalignment, which are then used to incrementally update the
representation subspace and fitting strategy for robust person-specific modeling on the fly.

3 Our Approach
In this paper, we propose a novel approach for face alignment in unconstrained videos. We
first learn the part-based representations to model the facial shape and appearance respec-
tively. The discriminative fitting is performed by learning a cascade of regressors that maps
from the appearance representation to the shape parameters. Then personalized modeling is
achieved by incremental representation update and fitting adaptation in parallel. Finally, we
propose a deep fitting evaluation to alleviate the drifting issue.

3.1 Part-Based Representations

Our goal is to jointly learn the shape representation and appearance representation using
part-based models. Both representations should be compact and efficient to facilitate incre-
mental person-specific modeling.
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The shape representation is learned by firstly performing Procrustes analysis [8] on train-
ing images to obtain normalized facial shapes. Then we apply principle component analysis
(PCA) to obtain the mean shape and eigenvectors {Ms,Vs}, where s denotes shape. An
instance shape can be modeled as s(p) = Ms +Vsp, where p is the shape representation.

The appearance representation is learned using local response maps [29]. Given a im-
age I and the shape representation p, the local response map around the l-th landmark is
Al(p,I) = 1/(1+ exp(alφ(s(p),I)+bl)) , where {al ,bl}L

l=1 are patch experts learned 6by
cross-validation. φ(·) is the feature vector with a possible choice from SIFT, HOG, LBP, etc.
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Figure 1: Top: perturbations (yellow dash) are
sampled around the ground-truth shape (green
dash). Bottom: response maps (yellow box)
of the same landmark are arranged as tensor
to learn the appearance representation.

To simulate the appearance variation
and obtain more robust representation [2],
we sample perturbations {∆pi j} around the
ground-truth p∗i as illustrated in Figure 1.
The perturbed response maps are arranged
as a tensor Tl = {Al(p∗i + ∆pi j,Ii)}i, j,
where i and j count images and perturba-
tions respectively. Similar to the shape rep-
resentation, we apply PCA on Tl to ob-
tain the mean and eigenvectors {Ma

l ,V
a
l },

where a denotes appearance. The appear-
ance representation of the l-th landmark
can be calculated by fast projection xl =
(Va

l )
−1(Al(p,I)−Ma

l ).
Now we can model the shape and ap-

pearance of an instance face using p and
x(p,I) =

[
xT

1 , · · · ;xT
L
]T . The part-based

representations are highly compact and ef-
ficient to compute. They are also robust to
variations even for unseen images given the generative nature of parametric models [19, 22].
These merits facilitate the incremental learning for person-specific modeling which will be
explained soon in Section 3.3.

3.2 Discriminative Fitting
The goal is to learn a cascade of non-linear mappings from the appearance representation
x(p,I) to the shape update ∆p. We refine the shape representation p from an initial guess p0

to the ground truth step by step:

pk+1 = pk +x(pk,I)Rk +bk, (1)

where {Rk,bk} is the regressor at step k and p∗ is the ground truth. Let ∆pk
i j = p?

i −pk
i j, the

regressors can be computed by solving the least square problem [44]:

argmin
Rk,bk

M

∑
i=1

N

∑
j=1
||∆pk

i j−x(pk
i j,Ii)Rk−bk||2. (2)

Let R̃k =
[
RkT bkT

]T
and x̃ =

[
x(pk,Ii)

T 1
]T

, the regressor can be computed with a closed-

form solution R̃k =
[
x̃T x̃+λ I

]−1 x̃T ∆pk.
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Former approaches [2, 6] employed boosted regressors for discriminative fitting. How-
ever, it is difficult to perform incremental learning under the boosting framework due to the
heavy computational load to update a large number of week regressors. In contrast, the cas-
cade of regressors is easy to train, fast in test, and can be effectively adapted in parallel on
the fly. We leave the details in Section 3.4.

3.3 Incremental Representation Update

To achieve personalized representations of shape and appearance, our goal is to incremen-
tally update the offline trained subspace {Ms,Vs} and {Ma

l ,V
a
l }L

l=1 in a unified framework.
Suppose the offline model is trained on m offline data TA with mean MA and eigenvectors VA,
where the SVD of TA is TA =UΣV T . Given n new online observations TB with mean MB, our
task is equivalent to efficiently compute the SVD of the concatenation

[
TA TB

]
=U ′Σ′V ′T .

It is infeasible to directly calculate the SVD as the entire offline training data need to be
stored and reused online, which is extremely computationally expensive. Instead, we follow
the sequential Karhunen-Loeve (SKL) algorithm [15, 26] to formulate the concatenation as:

[
U E

][Σ UT T̂B
0 E(T̂B−UUT T̂B)

][
V T 0
0 I

]
, (3)

where T̂B =
[
TB

√
mn

m+n (VB−VA)
]
, E = orth(T̂B−UUT T̂B). Now we only need to perform

SVD on the middle term instead of the entire concatenation:

TC = Ũ Σ̃Ṽ T , TC =

[
Σ UT T̂B
0 E(T̂B−UUT T̂B)

]
. (4)

By inserting TC back to Equation 3, we have
[
TA TB

]
=
([

U E
]
Ũ
)

Σ̃
(

Ṽ T
[
V T 0
0 I

])
. The

mean and eigenvectors can be instantly updated:

MAB =
m

m+n
MA +

n
m+n

MB,

U ′ =
[
U E

]
Ũ , Σ′ = Σ̃.

(5)

Compared with the naive approach, the incremental subspace learning can significantly
reduce the space complexity from O(d(m+ n)) to O(dn) and cut down the computational
complexity from O(d(m+n)2) to O(dn2), where m� n and d denotes the length of a single
observation. It guarantees efficient modeling of the personalized representations.

3.4 Fitting Adaptation in Parallel

Once the shape and appearance representations are updated, we need to update the cascade
of regressors instantly to catch up the online changes. However, adapting the cascade of re-
gressors in a sequential order would be slow since R̃k needs to be recomputed after R̃k−1. To
address this issue, we follow [1] to decouple the dependence in the cascade by directly sam-
ple pk from a norm distribution pk ∼ N (p?, Λk), where Λk is the shape variations learned
offline. Once the cascade is flatten into independent mappings, all regressors can be simul-
taneously updated in parallel.
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During the offline training, we compute x̃A and R̃A following the definition given in
Section 3.2. During the online testing, we sample ∆pB based on the norm distribution and
re-compute the new appearance representation x̃B. R̃A can be adapted to R̃AB by:

R̃AB = R̃A−PABR̃A +(PA−PABPA)(x̃B)
T ∆pB, (6)

where PA =
[
(x̃A)

T R̃A +λ I
]−1 , PB =

[
x̃BPAx̃T

B + I
]−1, and PAB = PAx̃T

ABPBx̃B.
Given the fact that d� n, the computational cost of the matrix inversion in Equation 6

is significantly reduced from O(d3) to O(n3) by decoupling regressors in the cascade. It is
also highly memory-efficient since we can pre-compute PA offline and only a small number
of online observations x̃B need to be maintained for incremental adaptation.

3.5 Deep Fitting Evaluation

It is crucial to evaluate the fitting results since blind adaptation using erroneous fittings would
inevitably result in model drifting. To address this issue, we leverage deep neural networks
for robust fitting evaluation. Only well-fitted faces will be used to incrementally update the
representation subspace and adapt the cascade of regressors for person-specific modeling

Figure 2: The architecture of the fitting eval-
uation network. It takes the concatenation of
the face image and landmark map as input and
outputs a binary label to indicate correct or er-
roneous alignment.

Our goal is to learn a deep neural net-
work that takes the fitting results as input
and outputs a binary label to indicate cor-
rect or erroneous alignment. To connect
the facial appearance and the fitted shape, a
possible solution is to directly concatenate
the vector of landmark coordinates to an in-
termediate fully connected layer [41, 42].
However, we experienced very limited per-
formance using this design in our experi-
ments. The reason is that the pixel-wise
spatial information diminishes significantly
after a series of max-pooling operations
[16]. The network can hardly learn the cor-
rect connection between the facial appear-
ance and the landmark location.

Instead, we propose to concatenate the facial image and the landmark map at the very
beginning of the network as shown in Figure 2. Each pixel in the landmark map is a binary
value that marks the presence of the corresponding landmark. Our network is designed based
on a variant of the VGG-16 networks [31] which has a reduced number of fully connected
neurons. We can, therefore, initialize the training process from weights trained on large
datasets for object classification. To fine-tune the network for our task, we construct a train-
ing set U = {(I,S);y}, where y ∈ {1,−1}. I is training images with landmark annotation.
The landmark map S is generated using the ground-truth shape when y = 1, or the perturbed
shape when y =−1. We calculate cross-entropy loss for backpropagation.

The proposed deep fitting evaluation significantly outperforms former approach [1] that
employs global and local handcrafted features for error detection, which will be discussed
soon in Section 4.2. It is also very efficient, which takes less than 10ms to process one image
using a single K40 GPU accelerator.
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4 Experiments
We first introduce the datasets used in our experiments as well as detailed settings. Then
we perform algorithm validation and discussion to evaluate the proposed method in different
aspects. Finially, we compare our approach with state of the arts in different datasets to
demonstrate its superior performance.

4.1 Datasets and Settings
Both image and video datasets were used to conduct the experiments. The image datasets
were mainly used to train the representation subspace and the cascade of regressors offline,
while the video datasets were used to evaluate the performance of the proposed method.

Four image datasets were used for offline training: (1) MultiPIE [11], (2) LFPW [3],
(3) Helen [14], and (4) AFLW [13]. From each of them, we collected 1300, 1035, 2330, and
4050 images of total 8715 images with 68-landmark annotations [27].

Four video datasets were used for online testing: (1) FGNET [10], (2) ASLV [17], (3)
300-VW [30], and (4) YtbVW [24]. From each of them, we collected 5, 10, 20, and 6
videos of more than 30,000 frames for the evaluation. These videos present unconstrained
challenges, such as pose/expression variations, illumination changes, and partial occlusions.

We trained multi-view models based on different yaw angers [23]: left [−90◦,−30◦),
frontal [−30◦,30◦] and right (30◦,90◦]. All training images were registered to a reference
2D facial shape with an interocular distance of 50 pixels to remove any 2D rigid movement.
We employed HoG features to best balance the fitting accuracy and efficiency. The size of
the patch expert and the local support window were set to 11×11 and 21×21 respectively.
We sampled 10 perturbations for each training image with the standard deviations of ±0.1
for scaling,±10◦ for rotation, and±10 pixels for translation. Normalized Root Mean Square
Error (Norm RMSE) was used in all experiments.

4.2 Algorithm Validation and Discussion
We conducted following experiments to validate the proposed approach in different aspects:
person-specific modeling, joint adaptation, and deep fitting evaluation.

Validation of person-specific modeling. To investigate the contribution of the proposed
personalized modeling, we first trained the representation and fitting models using MultiPIE
and then collected two clips from FGNET and ASLV for testing. Each clip contains 300
frames with intensive pose and expression variations. The testing was performed under two
different settings: (1) incrementally update the representation and fitting models, and (2)
without any model adaptation. The frame-wise Norm RMSE in Figure 3 shows that both
settings have comparable accuracy at the beginning. The online version outperforms the of-
fline version once the model adaptation was performed. The superior performance becomes
more significant when intensive variations and partial occlusions exist (around frame 200 of
FGNET and frame 150 of ASLV).

Validation of joint adaptation. To investigate the joint adaptation of representation
and fitting models, we first trained the offline models using all the training images and then
carried out experiments on the full sets of FGNET and ASLV under three different settings:
(1) update the representation model, (2) update the fitting model, and (3) update both models.
The cumulative fitting errors are recorded in Table 1. The results indicate that only adapt
the fitting strategy has better performance than only update the representation subspace.



8 PENG, XI: TRACK FACIAL POINTS IN UNCONSTRAINED VIDEOS

0 50 100 150 200 250 300

N
or

m
 R

M
SE

0.02

0.04

0.06

0.08

0.1
Offline Model
Online Model

0 50 100 150 200 250 300

N
or

m
 R

M
SE

0

0.05

0.1

0.15

0.2

0.25
Offline Model
Online Model

0 50 100 150 200 250 300

N
or

m
 R

M
SE

0.02

0.04

0.06

0.08

0.1
Without Update
Update Res. & Fit.

0 50 100 150 200 250 300

N
or

m
 R

M
SE

0

0.05

0.1

0.15

0.2
Without Update
Update Res. & Fit.

Figure 3: Average fitting errors with and without the model adaptation on FGNET and ASLV.

However, to achieve the best performance, it is necessary to jointly update both models in a
unified framework. In this case, a more faithful personalized modeling can be expected by
jointly update the representation subspace and adapt the fitting strategy.

Table 1: Cumulative error distributions on FGNET and ASLV with different settings.
Update < 0.04 < 0.06 < 0.08 < 0.04 < 0.06 < 0.08

Rep. 78.2% 93.1% 95.6% 62.9% 78.0% 89.4%
Fit. 84.0% 96.4% 98.5% 58.2% 73.3% 91.2%

Rep. & Fit. 91.8% 97.0% 99.4% 68.7% 84.6% 93.5%

Validation of deep fitting evaluation. The online fitting evaluation is crucial in our
incremental learning framework. Adaptation using erroneous fittings will drift the offline
learned models and eventually lead to failure. To evaluate the performance the proposed
deep fitting evaluation, we trained the network using image datasets and test the evaluation
accuracy on videos. We sampled 5 perturbations for each image, where the ground-truth
shape and perturbed shape were labeled as positive and negative respectively. Note that we
used more negative rather than positive samples to train the network as misalignment detec-
tion is the major target here. Table 2 shows the average misalignment detection accuracy
in different video datasets. Our approach achieves around 90% accuracy in general. It can
robustly detect erroneous fittings in challenging conditions and pick out well-aligned faces
for online adaptation, which can significantly alleviate the drifting issue.

Table 2: Misalignment detection accuracy on different video datasets.
FGNET [10] ASLV [17] 300-VW [30] YtbVW [24]

Accuracy 94.4% 91.7% 85.3% 88.1%

4.3 Comparison with Previous Work
We compare our approach with four approaches that reported state-of-arts performance:
(1) regularized landmark mean-shift (RLMS) [29], (2) discriminative response map fitting
(DRMF) [2], (3) incremental face alignment (IFA) [1], and (4) explicit shape regression
face alignment (ESR) [6]. For a fair comparison, we tested these methods in a tracking-by-
detection manner.
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Comparison of fitting accuracy. We compared our approach with the four methods
on different video datasets. The average fitting errors are compared in Table 3. We have
following observations. First, our approach has the lowest fitting errors and outperforms
others with substantial margins, which demonstrates the superior performance of our ap-
proach in unconstrained videos. Second, compared with the performance on FGNET and
ASLV, the advantage of our approach is more significant on 300-VW and YtbVW which
present dynamic head movements, expression variations, illumination changes and partial
occlusions. This result proves that the proposed person-specific alignment can better han-
dle unconstrained data than other generic methods. Third, we also notice that ESR and IFA
have better performance than RLMS and DRMF. A possible reason is that the explicit 2D
shape used in ESR and IFA is more flexible than the constrained 3D shape used in RLMS
and DRMF, which enables more accurate fittings when large pose and violent expression
exist. However, they are still inferior to ours since they rely on offline models and lack the
capability to capture the intensive online changes.

Table 3: Comparison of the averate fitting errors of different methods on four datasets.
FGNET [10] ASLV [17] 300-VW [30] YtbVW [24]

RLMS [29] 4.11% 5.68% 7.79% 7.19%
DRMF [2] 3.75% 5.17% 6.25% 6.03%

IFA [1] 3.52% 4.54% 5.71% 5.48%
ESR [6] 3.49% 4.85% 5.85% 5.61%
OURS 3.36% 4.41% 5.38% 5.23%

Comparison of running time. We compared the average running time per frame of
different methods and report the results in Table 4. For each method, the average speed was
evaluated using the same 1000 frames. We tested the proposed method with either turning
off or on the model adaptation. The results demonstrate that when the model adaptation is
turned off, our approach is much more efficient than RLMS, and has comparable perfor-
mance as DRMF and ESR. It slows down obviously when the incremental model adaptation
is turned on. The reason is we apply the deep fitting evaluation at each frame, and perform
the evaluation and model adaptation in a sequential order. The testing speed can be signifi-
cantly improved with better implementation technique such as applying batch evaluation and
model adaptation in parallel threads. We leave this as our future work.

Table 4: Comparison of the average running time per frame of different methods.
RLMS [29] DRMF [2] ESR[6] OURS (off) OURS (on)

116ms 55ms 89ms 76ms 218ms

5 Conclusion
In this paper, we propose a novel approach to track facial points in unconstrained videos. We
investigate incremental learning to update the representation subspace and simultaneously
adapt the cascade of regressors to achieve person-specific modeling. To address the drifting
issue, we propose to leverage the deep neural network for robust fitting evaluation. Experi-
ments on both image and video datasets have validated our approach in different aspects and
demonstrated its superior performance compared with the state of the arts in terms of fitting
accuracy and testing speed.
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