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Localization is a key task for autonomous cars;
systems such as the Google driverless car rely
on precise and detailed maps for safe opera-
tion. Light detection and ranging (LIDAR) sen-
sors are capable of providing rich information—
including metric range and point appearance.
Robust methods can use this data for vehicle
localization by extracting the ground-plane for
alignment to a prior map, as in [2].

Vision sensors as part of the localization
pipeline can be a great enabler for autonomous
platforms. Contrary to LIDAR methods, identi-
fying the ground-plane from a camera image is a
more challenging task. In our previous work [3],
we considered localizing with a monocular cam-
era by aligning the image to a prior map. As we
demonstrated, this can be difficult as the ground-
plane can be obscured by obstacles within view
of the camera. In this work, we are interested in
partitioning an image stream into obstacles and
prior map, as shown in Fig. 1, so we can mask
out obstacles during registration.

Similar to previous work [1, 4], we use a
1D-Markov random field (MRF) to model a hor-
izontal image partition between obstacles and
ground-plane, as in Fig. 1. However, rather than
formulating our MRF potentials using image ap-
pearance alone (using learned [1] or hand-tuned
features [4]), we instead consider the tempo-
ral stream of images and inferred parallax. We
probabilistically evaluate optical flow against
expected optical flow derived from known scene
structure and camera egomotion, as in Fig. 2.

Our approach is evaluated on a challeng-
ing urban dataset with grayscale imagery, where
lighting is non-uniform. We demonstrate our
proposed algorithms by looking at errors with
respect to hand-labeled groundtruth and present
results showing improved image registration
when obstacle masks are used.
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Figure 1: 1D-MRF to partition images into ground-
plane and obstacles; each variable node in our MRF
partitions an image column. Various unary potentials
can be applied to each node; our work emphasizes a
potential derived from optical flow.

Figure 2: (Left) Optical flow vectors and expected
flow vectors with uncertainties. (Middle) Optical flow
likelihood and resulting partition. (Right) Optical flow
potential implicitly considers segmenting image col-
umn into background (B), obstacle (O), and ground-
map (M).
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