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Many practical applications in image processing and computer vision
require one to analyze and process high-dimensional data. It has been
observed that these high-dimensional data can be represented by a low-
dimensional subspace. As a result, the collection of data from different
classes can be viewed as samples from a union of low-dimensional sub-
spaces. In subspace clustering, given the data from a union of subspaces,
the objective is to find the number of subspaces, their dimensions, and
the segmentation of the data and a basis for each subspace. In many ap-
plications, one has to deal with heterogeneous data. For example, when
clustering digits, one may have to process both computer generated as
well as handwritten digits. Similarly, when clustering face images col-
lected in the wild, one may have to cluster images of the same individual
collected using different cameras and possibly under different resolution
and lighting conditions. Clustering of heterogeneous data is difficult be-
cause it is not meaningful to directly compare the heterogenous samples
with different distributions which may span different feature spaces. In
recent years, various domain adaptation methods have been developed to
deal with the distributional changes that occur after learning a classifier
for supervised and semi-supervised learning [3]. However, to the best
of our knowledge, these methods have not been developed for clustering
heterogeneous data that lie in a union of low-dimensional subspaces.

In this paper, we present domain adaptive versions of the sparse and
low-rank subspace clustering methods (i.e. SSC [1] and LRR [2]). Fig-
ure 1 gives an overview of the proposed method. Given data from K
different domains, we simultaneously learn the projections and find the
sparse or low-rank representation in the projected common subspace. Once
the projection matrices and the sparse or low-rank coefficient matrix is
found, it can be used for subspace clustering.

Suppose that we are given Ns samples, {yds
i }

Ns
i=1, from domain Ds,

and Nt samples, {ydt
i }

Nt
i=1, from domain Dt . Assuming that each sample

from domain Ds has the dimension of Ms, let Ys = [yds
1 , ...,yds

Ns
] ∈RMs×Ns

denote the matrix of samples from domain Ds. Similarly, let Yt ∈RMt×Nt

denote the matrix containing Nt samples each of dimension Mt from do-
main Dt . Note that the dimensions of features in Ds and Dt are not re-
quired to be the same, i.e., Ms 6= Mt . The task of domain adaptive sub-
space clustering is to cluster the data according to their original subspaces
even though they might lie in different domains.

Let Ps ∈ Rm×Ns and Pt ∈ Rm×Nt be mappings represented as matri-
ces that project the data from Ds and Dt to a latent m-dimensional space,
respectively. As a result, PsYs and PtYt lie on an m-dimensional space.
Let G= [PsYs,PtYt ] = [g1, · · · ,gNs+Nt ]∈Rm×(Ns+Nt ) denote the concate-
nation of the projected samples in the m-dimensional space from both
source and target domains. The proposed method takes advantage of the
self-expressiveness property of the data in the low-dimensional space. As-
suming the presence of noise in the projected samples, the sparse (p = 1)
or low-rank (p = ∗) representation matrix can be found by solving the
following optimization problem
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SSC 56.93 57.14 58.16 57.14 54.69 54.08 56.36 ± 1.60
CO-SSC 55.91 57.14 58.16 57.75 52.65 53.87 55.91 ± 2.22
DA-SSC 52.86 54.29 55.71 57.55 53.67 50.81 54.15 ± 2.33
ED-SSC 57.75 58.75 59.59 60.61 54.08 53.67 57.40 ± 2.90
GM-SSC 54.69 54.69 59.39 58.57 58.78 57.76 57.31 ± 2.09

LRR 52.04 48.57 53.26 56.53 44.28 43.26 49.66 ± 5.23
CO-LRR 46.73 47.35 47.96 52.45 54.49 53.27 50.37 ± 3.4
DA-LRR 36.76 36.12 35.51 34.69 37.55 36.12 36.13 ± 0.99
ED-LRR 42.45 44.29 42.04 49.39 41.43 42.45 43.67 ± 2.96
GM-LRR 47.76 45.10 47.14 37.96 47.96 49.59 45.92 ± 4.16

Table 1: Average clustering errors on the UMD-AA01 face dataset. The
top performing method in each experiment is shown in boldface. Note
that {1},{2} and {3} correspond to session 1, session 2 and session 3,
respectively. DA-SSC and DA-LRR denote our proposed methods.
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Figure 1: An overview of the proposed domain adaptive subspace cluster-
ing framework.

min
C
‖C‖p +

τ

2
‖G−GC‖2

F , s. t. diag(C) = 0, (1)

where the ith column of C = [c1,c2, · · · ,cNs+Nt ] ∈ RNs+Nt×Ns+Nt is rep-
resentation coefficient for gi and diag(C) is the vector of the diagonal
elements of C. We propose to learn projections Ps and Pt and the rep-
resentation coefficient matrix C simultaneously by solving the following
optimization problem

min
P,C
‖C‖1 +

τ

2
‖PY−PYC‖2

F s.t.diag(C) = 0, PT
s Ps = INs ,P

T
t Pt = INt

where τ > 0 is a parameter, P = [Ps,Pt ], and Y =
[

Ys 0
0 Yt

]
. The constrain,

PT
s Ps = PT

t Pt = I, is added to avoid degenerate solutions.
Our algorithms iteratively updates C, and P. C is updated by solv-

ing (1) with ADMM similar to a regular SCC or LRR. Afterwards, we
fix the C, and re-write DA-SSC and DA-LRR problems as minP ‖PY−
PYC‖2

F s.t. PT
s Ps = INs ,PT

t Pt = INt , which can be simplified as

min
P

Trace
(

P[YYT −YCT YT −YCYT +YCCT YT ]PT
)

(2)

subject to the constraints PT
s Ps = INs ,PT

t Pt = INt . This problem involves
optimization on Stiefel manifold, hence, we solve it using the manifold
optimization technique. Once the coefficient matrix C met its conver-
gance, the affinity matrix W = |C|+ |C|T is calculated to obtain the seg-
mentation of the heterogeneous data.

We evaluated the performance of our domain adaptive subspace clus-
tering methods on three sets of publicly available datasets - UMD-AA01
face dataset, Amazon-DLSR-Webcam office datasets, and USPS-MNIST-
Alphadigits handwritten digits datasets. Table 1 shows how the results of
our methods on UMD-AA01 face dataset is compared to state-of-the-art
domain adaptive subspace clustering methods.
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