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Abstract

Differently from computer vision systems which require explicit supervision, humans
can learn facial expressions by observing people in their environment. In this paper, we
look at how similar capabilities could be developed in machine vision. As a starting
point, we consider the problem of relating facial expressions to objectively-measurable
events occurring in videos. In particular, we consider a gameshow in which contestants
play to win significant sums of money. We extract events affecting the game and cor-
responding facial expressions objectively and automatically from the videos, obtaining
large quantities of labelled data for our study. We also develop, using benchmarks such
as FER and SFEW 2.0, state-of-the-art deep neural networks for facial expression recog-
nition, showing that pre-training on face verification data can be highly beneficial for this
task. Then, we extend these models to use facial expressions to predict events in videos
and learn nameable expressions from them. The dataset and emotion recognition models
are available at http://www.robots.ox.ac.uk/~vgg/data/facevalue.

1 Introduction
Humans make extensive use of facial expressions in order to communicate. Facial expres-
sions are complementary to other channels such as speech and gestures, and often convey
information that cannot be recovered from the other two alone. Thus, understanding facial
expressions is often necessary to properly understand images and videos of people.

The general approach to facial expression recognition is to label a dataset of faces with
either nameable expressions (e.g. happiness, sadness, disgust, anger, etc.) or facial action
units (movements of facial muscles such as tightening the lips or raising an upper eyelid)
and then learn a corresponding classifier, for example by using a deep neural network. In
contrast, humans need not to be explicitly told what facial expressions means, but can learn
that by associating facial expressions to how people react to particular events or situations.1

In order to investigate whether algorithms can also learn facial expressions by establish-
ing similar associations, in this paper we look at the problem of relating facial expressions
to objectively-quantifiable contextual events in videos. The main difficulty of this task is that
there is only a weak correlation between an event occurring in a video and a person showing
a particular facial expression. However, learning facial expressions in this manner has three
important benefits. The first one is that it grounds the problem on objectively-measurable
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1Generating certain facial expressions is an innate ability; however, recognizing facial expression is a learned
skill.
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Figure 1: FaceValue dataset. We study facial expressions from objectively-measurable
events occurring in the “Deal or No Deal” gameshow. Top: detection of an event at round
t = 6 in the game. Left: a box is opened, revealing to the contestant that her prize is not
the one of value xt = £5. Since this is a low amount, well below the expected value of the
prize of E5 = £17,331, this is a “good” event for the contestant. Right: the contestant’s face,
intuitively expressing happiness, is detected. Note also the overlay for xt = £5 disappearing
from a frame to the next; our system can automatically read such cues to track the state of
the game. Bottom: four example tracks, the top two for “good” events and the bottom two
for “bad” events, as defined in the text.

quantities, whereas labelling emotions or even facial action units is often ambiguous. The
second benefit is that contextual information can often be labelled in videos fully or partially
automatically, obviating the cost of collecting large quantities of human-annotated data for
data-hungry machine learning algorithms. Finally, the third advantage is that the ultimate
goal of face recognition in applications is not so much to describe a face, but to infer from it
information about a situation or event, which is tackled directly by our study.

Concretely, our first contribution (Sect. 2; Fig. 1) is to develop a novel dataset, FaceValue,
of faces extracted from videos together with objectively-measurable contextual events. The
dataset is based on the “Deal or No Deal” TV program, a popular game where contestants
can win or lose significant sums of money. Using a semi-automatic procedure, we extract
significant events in the game along with the player (and public) reaction. We use this data to
predict from facial expressions whether events are “good” or “bad” for the contestant. To the
best of our knowledge, this is the first example of leveraging gameshows in facial expression
understanding and the first study aiming to relate facial expressions to people’s activities.

Our second contribution is to carefully assess the difficulty of this problem by establish-
ing a human baseline and by extending the latter to existing expression recognition datasets
for comparison (Sect. 3). We also develop a number of state-of-the-art expression recogni-
tion models (Sect. 4) and show that excellent performance can be obtained by transferring
deep neural networks from face verification to expression recognition. Our final contribution
is to extend such systems to the problem of recognising FaceValue events from facial ex-
pressions (Sect. 5). We develop simple but effective pooling strategies to handle face tracks,
integrating them in deep neural network architectures. With these, we show that it is not only
possible to predict events from facial expressions, but also to learn nameable expressions by
looking at people spontaneously reacting to events in TV programs.
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Dataset Size Labelling Technique Expressions Labels

FER 35,887 Faces Internet search Mixed 6+1 emotions
AFEW 5.0 1,426 Clips Subtitles Acted 6+1 emotions
SFEW 2.0 1,635 Faces Subtitles Acted 6+1 emotions
AM-FED 168,359 Faces Human experts Spontaneous FACS
FaceValue (ours) 192,030 Faces Metadata extraction Spontaneous Event Outcome

Table 1: Comparison of emotion-based datasets of faces in challenging conditions.

1.1 Related work

Facial expressions are a non-verbal mode of communication complementary to speech and
gestures [1, 11]. They can be produced unintentionally [10], revealing hidden states of the
actor in pain or deception detection [2]. Facial expressions are commercially valuable, at-
tracting increasing investment from advertising agencies that seek to understand and manip-
ulate the consumer response to a product [12] and corresponding regulatory attention [31].

Face-related tasks such as face detection, verification and recognition have long been
researched in computer vision with the creation of several labelled datasets: FDDB [18],
AFW [39] and AFLW [21] for face detection; and LFW [16] and VGG-Face [28] for face
recognition and verification. Face detectors and identity recognizers can now rival the perfor-
mance of humans [33]. Facial expression recognition has also received significant attention
in computer vision, but it presents a number of additional subtleties and difficulties which
are not found in face detection or recognition. The main challenge is the consistent labelling
of facial expressions which is difficult due to the subjective nature of the task. A number
of coding systems have been developed in an attempt to label facial expressions objectively,
usually at the level of atomic facial movements, but even human experts are not infallible in
generating such annotations. Furthermore, getting these experts to annotate a dataset is ex-
pensive and difficult to scale [27]. Another issue is the “authenticity” of facial expressions,
arising from the fact that several datasets are acted [34], either specifically for data collec-
tion [25] [24] [14] or indirectly as data is extracted from movies [8]. Our FaceValue dataset
sidesteps these problems by recording spontaneous reactions to objectively-occurring events
in videos.

Examples of datasets which contain challenging variations in pose, lighting conditions
and subjects are given in Table 1. Of these, two in particular have received significant re-
search interest as popular benchmarks for facial expression recognition. The Static Facial
Expression in the Wild 2.0 (SFEW-2.0) data [7] (used in the EmotiW challenges [8]) con-
sists of images from movies which collectively contain 1,635 faces labelled with seven emo-
tions (this dataset was constructed by selectively extracting individual frames from AFEW-
5.0 [9]). The Facial Expression Recognition 2013 (FER-2013) dataset [13], which formed
the basis of a large Kaggle competition, contains 35k images labelled with the same seven
emotions. These datasets were used to develop several state-of-the-art emotion recognition
systems. Among the top-performing ones, the authors of [37] and [19] propose ensembles
of deep network trained on the FER and SFEW-2.0 data. There are also several commercial
implementations of expression recognition, such as CMU’s IntraFace [5] and the Affectiva
face software.
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2 FaceValue: expressions in context
In this section we describe the FaceValue dataset (Fig. 1) and how it was collected.

Data source. The “Deal or No Deal” TV game show2 was selected as the basis for our
data for a number of reasons. First, it contains a very significant amount of data. The show
has been running nearly daily in the UK for the past eleven years, totalling 2,929 episodes.
Each episode focuses on a different player and lasts for about forty minutes. Furthermore,
the same or very similar shows are or were aired in dozens of other countries. Second, the
game is based on simple rules and a sequence of discrete events that are in most cases easily
identifiable as positive or negative for the player, and hence can be expected to induce a
corresponding emotion and facial expression. Furthermore, these events are easily detectable
by parsing textual overlays in the show or other simple patterns. Thirdly, since there is a
single player, it is easy to identify the person that is directly affected by the events in the
video and the camera tends to focus on his/her face.

An example of the in-game footage and data extraction pipeline is shown in Fig. 1.
The rules of the game are easily explained. There are n = 22 possible cash prizes X0 =
{p1, p2, . . . , pn} where prizes p1 < p2 < · · ·< pn range from 1p up to £250,000. Initially the
player is assigned a prize x0 ∈ X0 but does not know its value. Then, at each round of the
game the player can randomly extract (realised as opening a box, see Fig. 1 top-left) one of
the prizes xt 6= x0 from Xt and reveal it, resulting in a smaller set Xt = Xt−1−{xt} of possi-
ble prizes. Through this process of elimination the player obtains information about his/her
prize x0. Occasionally the player is offered the opportunity to leave the game with a prize
pd (“deal”) determined by the game’s host or to continue playing (“no deal”) and eventually
leave with x0.

The expected value Et of the win x0 at time t is Et =meanXt . When a prize xt is removed
fromXt−1, the player perceives this as a “good” event if Et > Et−1, which requires xt < Et−1,
and a “bad” event otherwise. In practice we conservatively require Et > Et−1 +∆ for a good
event, where ∆ = £750. Interestingly, the game is continued even after the player has taken
a “deal”; in this case the roles of “good” and “bad” events are reversed as the player hopes
that the accepted deal pd is higher than the prize x0 he/she gave up.

Dataset content. The data in FaceValue is defined as follows. Faces are detected right after
a new prize xt is revealed for about seven seconds. These faces are collected in a “face track”
ft . Furthermore, the face track is assigned the binary label:

yt = dt ×
{
+1, xt +∆ < Et−1,

−1, xt +∆≥ Et−1,

where dt is +1 if the deal was not taken so far, and −1 otherwise. Note that there are several
levels of indirection between yt and a particular expression being shown in ft . For example,
a player may not perceive a good or bad event according to this simple model, or could be
responding to a stroke of bad luck with an ironic smile. The labels yt themselves, however,
are completely objective.

Data is extracted from 102 episodes of the show, resulting in 192,030 frames distributed
over 2,118 labelled face tracks. Shows are divided into training, validation and test sets,
which also means that mostly different identities are contained in the different subsets.

2Outside of computer vision, the interesting decision making dynamics of contestants in a high-stakes environ-
ment during the “Deal or No Deal” game show have attracted research by economists [30].
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Data extraction. One advantage of studying facial expressions from contextual events is
that these are often easy to detect automatically. In our case, we take advantage of two
facts. First, when a prize is removed from the set Xt , this is shown in the game as a box
being opened (Fig. 1 top-left). This scene, which occurs systematically, is easy to detect and
is used to mark the start of an event. Next, the camera moves onto the contestant (Fig. 1
top-middle) to capture his/her reaction. Faces are extracted from the seven seconds that
immediately follow the event using the face detector of [20] and are stored as part of the face
track f = ( f1, f2, . . . , fT ). Occasionally the camera may capture the reaction of a member of
the public; while it would be easy to distinguish different identities (e.g. by using the VGG-
Faces model of Sect. 4), we prefer not to as the public is sympathetic with the contestant
and tends to react in a similar manner, improving the diversity of the collected data. Finally,
the value of the prize xt being removed can be extracted either from the opened box using
a text spotting system or, more easily, by looking at which overlay is removed (Fig. 1 top-
right). After automatic extraction, the data was fully checked manually for errors to ensure
its quality.

3 Benchmark data and human baselines

As FaceValue defines a new task in facial expression interpretation, in this section we estab-
lish a human baseline as a point of comparison with computer vision algorithm performance.
In order to compare FaceValue to existing facial expression recognition problems we estab-
lish similar baselines for two standard expression recognition datasets, FER and SFEW 2.0,
introduced below.

Benchmark datasets: FER and SFEW 2.0. The FER-2013 data [13] contains 48× 48
pixel images obtained by querying Google image search for 184 emotion-related keywords.
The dataset contains 35,887 images divided into 4,953 “anger”, 547 “disgust”, 5,121 “fear”,
8,989 “happiness”, 6,077 “sadness”, 4,002 “surprise” and 6,198 “neutral” further split into
training (28,709), public test (3,589) and private test (3,589) sets. Goodfellow et al. [13] note
that this data is likely to contain label errors. However, their own human study obtained an
average prediction accuracy of 65± 5%, which is comparable to the 68± 5% performance
obtained by expert annotators on a smaller but manually-curated subset of 1,500 acted im-
ages.

The SFEW-2.0 data [7] contains selected frames from different videos of the Acted Facial
Expressions in the Wild (AFEW) dataset [6] assigned to either: 225 “angry”, 75 “disgust”,
124 “fear”, 256 “happy”, 228 “neutral”, 234 “sad” and 150 “surprise”. The training, val-
idation and test splits are provided as part of the EmotiW challenge [8] and are adopted
here. The AFEW data was collected by searching movie close captions for emotion-related
keywords and then manually curating the results, generating a smaller number of labelled
instances than FER.

Human baselines. For each dataset we consider a pool of annotators, most of which are
not computer vision experts, and ask them to predict the label associated with each face. In
order to motivate annotators to be as accurate as possible, we pose the annotation process as a
challenge. The goal is to guess the ground-truth label of an image and a score displaying the
annotators’ prediction accuracy is constantly updated. Ultimately, annotators performances
are entered in a leaderboard. We found that this simple idea significantly improved the
annotators’ performance.
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The dataset instances selected for the annotation tasks were constructed as follows. From
FER, a random sample of 500 faces was extracted from the Public Test set. From SFEW 2.0,
the full Validation set (383 samples) was used (faces were extracted from each image as de-
scribed in section 4). From FaceValue, a random sample of 250 face tracks was extracted
from the validation set, each of which was transformed into an animated GIF to allow an-
notators to see the face motion. Performance on each dataset was evaluated by partitioning
into five folds, each of which was annotated by a separate pool. Every face instance across
the three datasets received at least four annotations.

On FER, our annotators achieved lower performance than results previously reported
in [13] (58.2% overall accuracy vs 65%). However, we also noted a significant variance
between annotators (±8.0%), which means that at least some of them were able to match
or exceed the 65% mark. The unevenness of the annotators shows how difficult or ambigu-
ous this task can be even for motivated humans. The annotators found SFEW-2.0 a more
challenging task, obtaining an average accuracy of 53.0±9.4% overall. One possible reason
for this difference is the manner in which the datasets were constructed. FER faces were
retrieved using Internet search queries which likely returned fairly representative examples
of each expression; in contrast SFEW images were extracted from movies. On FaceValue,
the average annotator accuracy was 62.0±8.1%. Since the classification task was binary, to
facilitate a comparison with algorithmic approaches, the ROC-AUC was also computed for
each annotator, resulting in an annotator average of 71.0±5%. The relatively low scores of
humans on each dataset illustrate the particularly challenging nature of the task. This diffi-
culty is underlined by the low levels of inter-annotator agreement (measured using Fleiss’
kappa) on the three datasets of 0.574, 0.424 and 0.491 respectively.

4 Expression recognition networks
In this section we develop state-of-the-art models for facial expression recognition in the
two popular emotion recognition benchmarks of Sect. 3, namely FER and SFEW 2.0. Deep
networks are currently the state-of-the-art models for emotion recognition, topping two of
the last three editions of the Emotion recognition in the Wild (EmotiW) contest [23]. While
the standard approach is to learn large ensembles of deep networks [19, 37], here we show
that a single network can in fact be competitive or better than such ensembles if trained
effectively. In order to do so we expand the available training data by pre-training models
on other face recognition tasks, and in particular face identity verification, using the recent
VGG-Faces dataset [29].

Architectures and training. We base our models on four standard CNN architectures:
AlexNet [22], VGG-M [3], VGG-VD-16 [35] and ResNet-50 [15]. AlexNet is used as a
reference baseline and is pre-trained on the ImageNet ILSVRC data [32]. VGG-VD-16 is
pre-trained on a recent dataset for face verification called VGG-Faces [29]. This model
achieves near state-of-the-art verification performance on the LFW [16] benchmark; how-
ever, it is also extremely expensive. Thus, we train also a smaller network, based on the
VGG-M configuration. All models are trained with batch normalization [17] and are imple-
mented in the MatConvNet framework [36].

Statistics such as image resolution and the usage of colour in the target datasets, and FER
in particular, differ substantially from LFW and VGG-Faces. Nevertheless, we found that
simply rescaling the smaller FER images to the higher VGG-Faces resolution together with
duplicating the grayscale intensities for the three colour channels produced excellent results.
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Model Pretraining Test (Public) Test (Private)

AlexNet ImageNet 62.44% 63.28%
VGG-M ImageNet 66.04% 67.57%
Resnet-50 ImageNet 67.79% 69.02%
VGG-VD-16 ImageNet 66.92% 70.38%

AlexNet VGGFaces 70.47% 71.44%
VGG-M VGGFaces 71.08% 72.08%
Resnet-50 VGGFaces 69.23% 70.33%
VGG-VD-16 VGGFaces 72.05% 72.89%
HDC? [19] - - 70.58%
HDC † † [19] - - 72.72%

Table 2: Accuracy on FER-2013 of different
CNN models and training strategies.

Model Pretraining Val Test

AlexNet VGGFaces 37.67% -
VGG-M VGGFaces 42.90% -
Resnet-50 VGGFaces 47.48% -
VGG-VD-16 VGGFaces 43.58% -

AlexNet VGGFaces+FER 38.07% 50.81%
VGG-M VGGFaces+FER 47.02% 53.49%
Resnet-50 VGGFaces+FER 50.91% 45.97%
VGG-VD-16 VGGFaces+FER 54.82% 59.41%
CMU? [37] FER combined 52.29% 58.06%
HDC? [19] FER + TFD 52.50% 57.3%
CMU † † [37] FER combined 55.96% 61.29%
HDC † † [19] FER + TFD 52.80% 61.6%

Table 3: Accuracy on SFEW-2.0 of differ-
ent CNN models and training strategies

Anger Disgust Fear Happiness Neutral Sadness Surprise

Figure 2: Visualizations of the FER emotions for the VGG-VD-16 model.

We also experimented with the other approach of pretraining by reducing the resolution and
removing colour information from VGG-Faces; while this resulted in very competitive and
more efficient networks, the full resolution models were still a little more accurate and are
used in the rest of the work.

After pre-training, each model is trained on the FER or SFEW 2.0 training set with a fine
tuning ratio of 0.1. This is obtained by retaining all but the last layer, performing N-way
classification, where N is the number of possible facial expression classes.
Results. Table 2 compares the different architecture and the state-of-the-art on FER. When
reporting ensemble models, ? denotes the best single CNN and †† denotes the ensemble. The
best previous results on FER is 72.72% accuracy, obtained using the hierarchical committee
of deep CNNs described in [19], combining more than 36 different models. By compar-
ison, VGG-VD-16 pre-trained on VGG-Faces achieves a slightly superior performance at
72.89%. VGG-M achieves nearly the same performance (−0.8%) at a substantially reduced
computational cost. We also note the importance of choosing a face-related pre-training set,
as pre-training in ImageNet loses 3-4% of performance.

Table 3 reports the results on the SFEW-2.0 dataset instead. Since the dataset itself
consists of labelled scene images, we use the faces extracted by the accurate face detec-
tion pipeline described in [37] which applies an ensemble of face detectors [4, 38, 39]. As
SFEW is much smaller than FER, pre-training is in this case much more important. The
best result achieved by any of the four models pre-trained with ImageNet only was 31.19%.
Pre-training on VGG-Faces produced substantially better results (+10%), and pre-training
on VGG- Faces and FER-Train produced better still (+18%). The best single model, VGG-
VD-16, achieves better performance than existing single and ensemble networks (+2.5%) on
the validation set, and better performance than all but the ensembles of [19, 37] on the test
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Model Pre-training Method Val. Test

VGG-M VGGFace+FER voting 0.656 0.592
VGG-VD VGGFace+FER voting 0.653 0.618

VGG-M VGGFace pooling arch. 0.764 0.691
VGG-VD VGGFace pooling arch. 0.726 0.671

VGG-M VGGFace+FER pooling arch. 0.794 0.722
VGG-VD VGGFace+FER pooling arch. 0.741 0.675

Table 4: ROC-AUC on FaceValue

0%

12.5%

25%

37.5%

50%

An
ge

r
Disg

us
t

Fe
ar

Hap
pin

es
s

Neu
tra

l
Sa

dn
es

s
Su

rpr
ise

“good” event “bad” event

Figure 3: FER expressions from FaceValue.

set (-2%).
Visualizations. While CNNs perform well, it is often difficult to understand what they are
learning given their black-box nature. Here we use the technique of [26] to visualize the
the best FER/SFEW model. This technique seeks to find an image I which, under certain
regularity assumptions, maximizes the CNN confidence Φc(I) that I represents emotion c.
Results are reported in Fig 2 for the VGG-VD-16 model trained on the FER dataset. Notably,
the reconstructed pictures are mosaics of parts representative of the corresponding emotions.

5 Relating facial expressions to events in videos
In this section we focus on the main question of the paper i.e. whether facial expressions can
be used to extract information about events in videos.
Baselines: individual frame prediction and simple voting. As baseline, a state-of-the-art
emotion recognition CNN Φ is applied to each frame in the face track. The T faces in a face
track f = ( f1, . . . , fT ) are individually classified by Φ( ft) and results are pooled to predict
whether the event is positive y = +1 or negative y = −1. Positive emotions (happiness)
vote for the first case, negative emotions (sadness, fear, anger, disgust) for the second and
neutral/surprise emotions are ignored. The label with the largest number of votes in the track
wins.
Pooling architectures. There are two significant shortcomings in the baseline. First, it
assumes a particular map between emotions in existing datasets and positive and negative
events in FaceValue. Second, it integrates information across frames using an ad-hoc voting
procedure which may be suboptimal. In order to address these shortcomings we learn on
FaceValue a new model that explicitly pools information across frames in a track. A pre-
trained network Φ = Φ1 ◦Φ2 is split in two parts. Then, the first part is run independently on
each frame, the results are pooled by either average or max pooling across time and the result
is fed to Φ2 for binary classification: Φ(f) = Φ2 ◦ pool(Φ1( f1), . . . ,Φ1( fT )). The resulting
architecture is fine-tuned on the FaceValue training set.

In practice, we found that the best results were obtained by using the emotion recognition
networks such as VGG-VD-16 trained on the FER data (Sect. 4). All layers up to fc7, pro-
ducing 4,096 dimensional feature vectors, are retained in Φ1. The best pooling function was
found to be averaging followed by L1 normalization of the 4,096 dimensional features. The
last layer Φ8 is fully connected (in practice, this layer is a linear predictor). CNNs are trained
using hinge loss, which generally performs better than softmax for binary classification.
Results. Table 4 reports the performance of different model variants on FaceValue. Similarly
to Table 3, pre-training on VGG-Face+FER is preferable than pre-training on VGG-Face
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Table 5: Comparison of human vs machine performance across benchmarks

Dataset Metric Human Human Committee Machine

FER (public test) Accuracy 0.57 0.66 0.72
SFEW 2.0 (val) Accuracy 0.53 0.63 0.56 [37]
FaceValue (val) ROC-AUC 0.71 0.78 0.79

only. This is required for the voting classifier, but beneficial also when fine-tuning a pre-
trained pooling architecture, which handily outperforms voting. VGG-M is in this case better
than VGG-VD (+5.3%), probably due to the fact that VGG-VD is overfitted to the pre-
training data. Finally, temporal average pooling is always better than max pooling.

Learning nameable facial expressions from events in videos. So far, we have shown
that it is possible to predict events in videos by looking at facial expressions. Here we
consider the other direction and ask whether nameable facial expressions can be learned by
looking at people in TV programs reacting to events. To answer this question we applied
the VGG-M pooling architecture to the FER images after pre-trained it on VGG-Faces (a
verification task) and fine-tuning it on FaceValue. In this manner, this CNN is never trained
with manually-labelled emotions. Fig. 3 shows the distribution of FER nameable expressions
for faces associated to “good” and “bad” FaceValue events by this model. There is a marked
difference in the resulting distributions, with a significant peak for happiness for predicted
“good” events and surprise and negative emotions for “bad” ones. This suggests that it is
indeed possible to learn nameable expressions from their weak association to events in video
without explicit and dedicated supervision as commonly done.

Comparison with human baselines. Table 5 compares the performance of humans and
of the best models on the three datasets FER, SFEW 2.0, and FaceValue. Remarkably, in
all cases networks outperform individual humans by a substantial margin (e.g. +15% on
FER and +8% on FaceValue). While this result is perhaps surprising, we believe the reason
is that, in such ambiguous tasks, machines learn to respond as humans would on average
whereas the performance of individual annotators, as reflected in Table 5, can be low due
to poor inter-annotator agreement. To verify this hypothesis, we combined multiple human
annotators in a committee and found that this gap either closes or disappears. In particular,
on FaceValue the performance of the committee is just a hair’s breadth lower than that of the
machine (78% vs 79%).

6 Summary
In this paper we have investigated the problem of relating facial expressions with objectively-
measurable events that affect humans in videos. We have shown that gameshows are a par-
ticularly useful data source for this type of analysis due to their simple structure, easily
detectable events and emotional impact on the participants and have constructed a corre-
sponding dataset FaceValue.

In order to analyze emotions in FaceValue, we have trained state-of-the-art neural net-
works for facial expression recognition in existing datasets showing that, if pre-trained on
face verification, single models are competitive or better than the multi-network committees
commonly used in the literature. Then, we have shown that such networks can successfully
understand the relationship between certain events in TV programs and facial expressions
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better than individual human annotators, and as well as a committee of several human anno-
tators. We have also shown that networks trained to predict such events from facial expres-
sions correlate very well to nameable expressions in standard datasets.
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