
BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS 1

Learning local feature descriptors with
triplets and shallow convolutional neural
networks
Vassileios Balntas1

http://www.iis.ee.ic.ac.uk/~vbalnt

Edgar Riba2

eriba@cvc.uab.es

Daniel Ponsa2

daniel@cvc.uab.es

Krystian Mikolajczyk1

k.mikolajczyk@imperial.ac.uk

1 Imperial College London
London, UK

2 Computer Vision Center, Computer
Science Department
Universitat Autònoma de Barcelona
Bellaterra (Barcelona), Spain

Abstract

It has recently been demonstrated that local feature descriptors based on convolu-
tional neural networks (CNN) can significantly improve the matching performance. Pre-
vious work on learning such descriptors has focused on exploiting pairs of positive and
negative patches to learn discriminative CNN representations. In this work, we propose
to utilize triplets of training samples, together with in-triplet mining of hard negatives.
We show that our method achieves state of the art results, without the computational
overhead typically associated with mining of negatives and with lower complexity of the
network architecture. We compare our approach to recently introduced convolutional
local feature descriptors, and demonstrate the advantages of the proposed methods in
terms of performance and speed. We also examine different loss functions associated
with triplets.

1 Introduction
Finding correspondences between images via local descriptors is one of the most exten-
sively studied problems in computer vision due to the wide range of applications. The field
has witnessed several breakthroughs in this area such as SIFT [14], invariant region detec-
tors [17], fast binary descriptors [4], optimised descriptor parameters [20, 22] which have
made a significant and wide impact in various computer vision tasks. Recently end-to-end
learnt descriptors [9, 11, 19, 24] based on CNN architectures and training on a large dataset
of positive and negative sample pairs, were demonstrated to significantly outperform state of
the art features. This was a natural adoption of CNN to local descriptors as deep learning
had already been shown to significantly improve in many computer vision areas [13].

Recent work on deep learning for learning feature embeddings examines the use of
triplets of samples instead of solely focusing on pairs [12, 21, 23]. Different loss functions
are proposed in these works, but a systematic study of their characteristics is yet to be done.

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 119.1-119.11

DOI: https://dx.doi.org/10.5244/C.30.119

https://dx.doi.org/10.5244/C.30.119

2 BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS

In addition, these works are focused on more general embeddings (e.g. product similarity, 3D
description of objects, MNIST classification). In this work, we investigate the use of triplets
in learning local feature descriptors with convolutional neural networks. Other contributions
include: 1) we examine different different loss functions for triplet based-learning, 2) we
investigate the performance of these methods in terms of patch matching, and patch pairs
classification in widely used benchmarks, 3) we show that in-triplet hard negative mining
can lead to improved results, 4) we demonstrate that excellent descriptor performance can be
obtained with a shallow network thus avoiding computationally complex architectures and
expensive mini-batch hard negative mining.

2 Related work

The design and implementation of local descriptors has undergone a remarkable evolution
over the past two decades ranging from differential or moment invariants, correlations, PCA
projected patches, histograms of gradients or other measurements, etc. An overview of pre-
2005 descriptors with SIFT [14] identified as the top performer can be found in [16]. Its
benchmark data accelerated the progress in this field and there have been a number of notable
contributions, including recent DSP-SIFT [7], falling into the same category of descriptors as
SIFT but the improvements were not sufficient to supersede SIFT in general. The research
focus shifted to improve the speed and memory footprint e.g. as in BRIEF [4] and the
follow up efforts. Introduction of datasets with correspondence ground truth [22] stimulated
development of learning based descriptors which try to optimise descriptor parameters and
learn projections or distance metrics [15, 20] for better matching.

End-to-end learning of patch descriptors using CNN has been attempted in several works
[9, 11, 19, 24] and consistent improvements were reported over the state of the art descrip-
tors. Interest in the field started from results shown in [9] that the features from the last layer
of a convolutional deep network trained on ImageNet [18] can outperform SIFT. This was a
significant result, since the convolutional features from ImageNet were not specifically learnt
for such local representations.

Learning a CNN from local patches extracted from local features only, based on a siamese
architecture with hinge contrastive loss [10] was demonstrated in [11, 19, 24] to significantly
improve the matching performance. This approach was originally proposed in [25], however
due to the limited evaluation this work was not immediately followed.

Note that in [11, 24] both feature layers and metric layers are learnt in the same network.
Thus, the final contrastive loss is optimised in terms of the abstract metric learned in the last
layer of the network. On the contrary, [19] directly uses the features extracted after the
convolutional layers of the CNN, without training a specialised distance layer. This allows
the extracted descriptors to be used in traditional pipelines. However, the experiments from
[24] show that metric learning performs better than generic L2 matching. In our experiments,
we also use features from CNNs without any metric learning layer.

Another important observation from [24] is that multiscale architectures perform better
than the single scale ones. However, this is not unique to the CNNs, since previous works
have shown that aggregating descriptors from multiple scales, improves the results. We focus
on single scale architectures, since these are the building blocks for multiscale descriptors,
and improving them, will improve the final multiscale results as argued by the DSP theory
from [7].

BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS 3

3 Learning patch descriptors
In this section, we first discuss the two most commonly used loss functions when learning
with triplets, and we then investigate their characteristics. A patch descriptor is considered
as a non-linear encoding resulting from a final layer of a convolutional neural network. Let
xxx ∈ Rn×n represent the patch given as input to the network, and f (xxx) ∈ RD represent the D
features given as output from the network. For all of the methods below, the goal is to learn
the embedding f (xxx) s.t. || f (xxx1)− f (xxx2)||2 is low if xxx1 and xxx2 are extracted from the same
physical point location i.e. positive match, and high otherwise.

3.1 Learning with pairs
Learning with pairs involves training from samples of the form {xxx1,xxx2, `}, with ` being
a label for the patch pair, which is −1 for negative pairs, and 1 for positive pairs. The
contrastive loss is defined as

l(xxx1,xxx2;`) =
{
|| f (xxx1)− f (xxx2)||2 if `= 1
max(0,µ−|| f (xxx1)− f (xxx2)||2) if `=−1 (1)

where µ is an arbitrarily set margin. Note that the weights of the CNN in f (·) need to be
regularised, otherwise the margin would have no effect. Intuitively the hinge embedding loss
penalizes positive pairs that have large distance and negative pairs that have small distance
(less than µ).

Note that learning local feature descriptors is a more specific problem than general image
classification such as in ImageNet, since the transformations a local patch can undergo are
limited compared to different objects of the same visual category. In addition, patches in
pairs representing negative examples are usually very different, thus make it easy for the
learning process to optimize the distances. This issue is identified in [19], where the majority
of the negative patch pairs (` = −1) do not contribute to the update of the gradients in the
optimization process as their distance is already larger than µ parameter in Eq. (1). To
address this issue hard negative mining was proposed [19] to include more negative pairs in
the training. The hard negative training pairs were identified by their distance and a subset
of these examples were re-fed to the network for gradient update in each iteration. Note
that while this process leads to more discriminative convolutional features, it also comes at
a very high computational cost, since in each epoch, a subset of the training data need to
be backpropagated again through the network. Specifically, the best performing architecture
from [19], required 67% of the computational cost to be spent for mining hard negatives.

3.2 Learning with triplets
Recent work in [12] shows that learning representations with triplets of examples, gives
much better results than learning with pairs using the same network. Inspired by this, we
focus on learning feature descriptors based on triplets of patches.

Learning with triplets involves training from samples of the form {aaa, ppp,nnn}, where a is
the anchor, p positive, which is a different sample of the same class as a, and n negative
is a sample belonging to a different class. In our case, a and p are different viewpoints of
the same physical point, and n comes from a different keypoint. Furthermore, optimising
the parameters of the network brings a and p close in the feature space, and pushes a and n
far apart. For brevity, we shall write that δ+ = || f (aaa)− f (ppp)||2 and δ− = || f (aaa)− f (nnn)||2.

4 BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS

We can categorise the loss functions that have been proposed in the literature for learning
convolutional embeddings with triplets into two groups, the ranking-based losses and the
ratio-based losses [12, 21, 23]. Below we give a brief review of both categories, and discuss
their differences.

3.2.1 Margin ranking loss

This ranking loss that was first proposed for learning embeddings using convolutional neural
networks in [21] is defined as

λ (δ+,δ−) = max(0,µ +δ+−δ−) (2)

where µ is a margin parameter. The margin ranking loss is a convex approximation to the
0−1 ranking error loss, which measures the violation of the ranking order of the embedded
features inside in the triplet. The correct order should be δ− > δ++µ . If that is not the case,
then the network adjusts its weights to achieve this result. As it can be seen the formulation
also involves a margin, similarly to Eq.(1). Note that if this marginal distance difference is
respected, the loss is 0, and thus the weights are not updated. Fig. 1 (b) illustrates the loss
surface of λ (δ+,δ−). The loss remains 0 until the margin is violated, and after that, there is
a linear increase. Also note that the loss in not upper bounded, only lower bounded to 0.

3.2.2 Ratio loss

In contrast to the ranking loss that forces the embeddings to be learned such that they satisfy
ranking of the form δ− > δ++µ , a ratio loss is investigated in [12] which optimises the ratio
distances within triplets. This loss learns embeddings such that δ−

δ+ → ∞.

λ̂ (δ+,δ−) = (
eδ+

eδ+ + eδ−
)2 +(1− eδ−

eδ+ + eδ−
)2 (3)

As one can examine from Eq. 3, the goal of this loss function is to force (eδ+

eδ++eδ−)
2 to 0, and

(eδ−
eδ++eδ−)

2 to 1. Note that both are achieved by the first term of the equation, but we report
here the original formulation from [12]. There is no margin associated with this loss, and by
definition we have 0 ≤ λ̂ ≤ 1 for all values of δ−,δ+. Note that unlike the margin-ranking
loss, where λ = 0 is possible, every training sample in this case is associated with some
non-negative loss value. Fig. 1 (d) shows the loss surface of λ̂ (δ+,δ−), which compared to
the ranking based loss has a clear slope between the two loss levels, and the loss reaches a
plateau quickly when δ− > δ+. Also note that this loss is upper bounded to 1.

3.3 In-triplet hard negative mining with anchor swap
All previous works that exploit the idea of triplet based learning use only two of the possible
three distances within each triplet w.r.t. one sample used as an anchor, thus ignoring the
third distance δ ′− = || f (ppp)− f (nnn)||2. Note that since the feature embedding network already
computes the representations for f (aaa), f (ppp), f (nnn), there is no need for extra convolutional
overhead to compute δ ′− except evaluating the L2 distance.

We define the in-triplet hard negative as δ∗ = min(δ−,δ
′
−). If δ∗ = δ ′−, we swap {a, p},

and thus p becomes the anchor, and a becomes the positive sample. This ensures that the

BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS 5

δ−
µ

δ+
a

n

p

(a)

 0
 2

 4
 6

 8
 10

 0
 2

 4
 6

 8
 10

lo
ss

δ-δ+

lo
ss

 0
 2
 4
 6
 8
 10
 12

(b)

a

pn

δ+
δ−

(c)

 0
 2

 4
 6

 8
 10

 0
 2

 4
 6

 8
 10

lo
ss

δ-δ+

lo
ss

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(d)

Figure 1: (a) Margin ranking loss. It seeks to push n outside the circle defined by the margin
µ , and pull p inside. (b) Margin ranking loss values in function of δ−,δ+ (c) Ratio loss. It
seeks to force δ+ to be much smaller than δ−. (d) Ratio loss values in function of δ−,δ+

hardest negative inside the triplet is used for backpropagation. Subsequently, the margin
ranking loss becomes λ (δ+,δ∗) = max(0,µ +δ+−δ∗). A similar expression can be devised
for the ratio loss. This simple technique can lead to improved results without computational
overhead, as we experimentally show in section 4.1.

3.4 Implementation details

To demonstrate the impact that triplet based training has on the performance of CNN descrip-
tors we use a simple network architecture : {Conv(7,7)-Tanh-Pool(2,2)-Conv(6,6)-Tanh-
FC(128)} implemented in Torch [6] with the following simplified training process. CNN
is trained from 5M triplets sampled on-the-fly using patches from [15]. We do not use data
augmentation unlike in typical CNNs for general classification or convolutional feature de-
scriptors from [24][11]. When forming a triplet for training we choose randomly a positive
pair of patches that originate from the same physical point and a randomly sampled patch
from another keypoint. This is in contrast to other works where carefully designed schemes
of choosing the training data are used in order to enhance the performance [11, 21]. For the
optimization the Stochastic Gradient Descend [3] is used, and the training is done in batches
of 128 items, with a learning rate of 0.1 which is temporally annealed, momentum of 0.9
and weight decay of 10−6. We also reduce the learning rate every epoch. The convolution
methods are from the NVIDIA cuDNN library [5]. The training of a single epoch with 5M
training triplets takes approximately 10 minutes in an NVIDIA Titan X GPU.

It is worth noting that the CNN used in our experiments consists of only two convolu-
tional layers, while all of the other state-of-the art deep feature descriptors consist of four
or more layers [11, 19, 24]. Our motivation for such shallow network is to develop a de-
scriptor for practical applications including those requiring real time processing. This is a
challenging goal given that all previously introduced descriptors are computationally very in-
tensive, thus impractical for most applications. This design is also inspired by the approach
introduced in [20], where pooling of the responses of Gaussian filters and a simple linear
projection produced very good results. Thus, we build a simple hierarchical network that
is based on 100 convolutional filters, followed by a linear transformation that projects the
responses of the filters to the desired output dimensionality. Several other implementation
variants are possible such as different non-linearity layers (e.g. ReLU as in [11, 24]), extra
normalization layers, or multiscale architectures but these are likely to further improve the
results and are beyond the scope of this work.

6 BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS

4 Experimental evaluation

In this section we evaluate the proposed local feature descriptor within the two most popular
benchmarks in the field of local descriptor matching and we test on different datasets to show
that it can generalise well. We compare our method to SIFT [14], Convex optimization [20]
and the recently introduced convolutional feature descriptors MatchNet [11], DeepCompare
[24] and DeepDesc [19], which are currently the state of the art in terms of matching accu-
racy. The original code was used in all the experiments. More details can be found in the
supplementary materials. We name our four variants TFeat-ranking for the networks
learnt with the ranking loss, TFeat-ranking* for the networks learnt with the ranking
loss with anchor swap, TFeat-ratio for the ratio loss, and TFeat-ratio* for the ratio
loss with anchor swap.

Note that for a fair comparison, we do not use the multi-scale 2ch architectures from [24].
Multi-scale approaches use multiple patches from each example, with extra inputs in form of
cropped sub-patches around the center of each patch. This introduces information from dif-
ferent samples in the scale-space and it has been shown to lead to significant improvements
in terms of matching accuracy [7]. Such approach can be used for various descriptors (e.g.
MatchNet-2ch, TFeat-2ch, DeepDesc-2ch). The evaluation is done with two different eval-
uation metrics frequently found in the literature, patch pair classification success in terms
of ROC curves [22], and mean average precision in terms of correct matching of feature
points between pairs of images [16]. Note that these two metrics are of very different nature,
the former measures how succesfull a classification of positive and negative patch pairs is,
and the latter is evaluating the performance of a descriptor in nearest neighbour matching
scenario where the task is to find correspondences in two large sets of descriptors.

4.1 Patch pair classification

The patch pair classification benchmark measures the ability of a descriptor to discriminate
positive patch pairs from negative ones in the Photo Tour dataset [15]. This dataset consists
of three subsets Liberty,Yosemite & Notredame, with each containing more than 500k patch
pairs extracted around keypoints. We follow the protocol proposed in [15] where the ROC
curve is generated by thesholding the distance scores between patch pairs. The number
reported here is the false positive rate at 95% true positive rate (FPR95), as used in many
influencial works in the field. For the evaluation we use the 100K patch pairs proposed
as defined in the benchmark. Note that DeepDesc [19], does not report performance with
training based on a single dataset, therefore for each test set, the training is performed on the
other two datasets.

The results for each of the combinations of training and testing using the three subsets of
the Photo Tour dataset are shown in Table 1 including the average across all possible com-
binations. Our networks outperform all the previously introduced single-scale convolutional
feature descriptors, and in some cases with large margins except from one training-test com-
bination where the 4096-dimensional version of MatchNet outperforms our TFeat variants.
However, even in this case, the version of MatchNet with comparable dimensionality to our
descriptors is outperformed by three of our variants. Also note that MatchNet is specifically
designed for patch pair classification, since it also includes a similarity metric layer trained
on top of the feature layer.

BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS 7

Table 1: Results form the Photo-Tour dataset [15]. Numbers are reported in terms of
FPR95 following state of the art in this field (see text for more details). Italics indicate
the descriptors introduced here, and bold numbers indicate the top performing descriptor.
Yos:Yosemite, Lib:Liberty, Not:Notredame.

Training Not Lib Not Yos Yos Lib
Testing Yos Lib Not

Descriptor # mean

SIFT [14] 128 27.29 29.84 22.53 26.55
ImageNet4conv [9] 128 30.22 14.26 9.64 18.04
ConvexOpt [20] 80 10.08 11.63 11.42 14.58 7.22 6.17 10.28
DeepCompare siam [24] 256 15.89 19.91 13.24 17.25 8.38 6.01 13.45
Deepcompare siam2stream 512 13.02 13.24 8.79 12.84 5.58 4.54 9.67
DeepDesc [19] 128 16.19 8.82 4.54 9.85
MatchNet [11] 512 11 13.58 8.84 13.02 7.7 4.75 9.82
MatchNet [11] 4096 8.39 10.88 6.90 10.77 5.76 3.87 7.75
TFeat-ratio 128 8.32 10.25 8.93 10.13 4.12 3.79 7.59
TFeat-ratio* 128 7.24 8.53 8.07 9.53 4.23 3.47 6.84
TFeat-margin 128 7.95 8.10 7.64 9.88 3.83 3.39 6.79
TFeat-margin* 128 7.08 7.82 7.22 9.79 3.85 3.12 6.47

4.2 Nearest neighbour patch matching
To measure the nearest neighbour matching performance, we establish correspondence ground
truth using the homographies and the overlap error from [16]. We consider two feature points
between the two images in correspondence if the overlap error between the detected regions
is less than 50%. Note that a region from one image can be in correspondence with sev-
eral regions from the other image. Each image has an associated set of approximately 1K
patches. The results are presented with precision-recall curves as it was originally proposed
in [16]. More specifically, for each patch from the left image we find its nearest neigh-
bour in the right image. Based on the ground truth overlap we identify the false positives
and true positives, and generate precision-recall curves. The area under the precision-recall
curve is the reported mean-average precision [7, 22, 24]. For this experiment, we use the
vl_benchmarks [27] library (vl_covdet function), with some minor modifications to
limit the descriptors extracted from an image to 1K, which is important to avoid bias by dif-
ferent numbers of features in different images. For all the experiments below, the descriptors
are trained on Liberty-DoG patches [15].

For the nearest neighbor matching test two datasets are mainly used in the literature,
Oxford matching dataset [16], which is of small size, but include images acquired by a
camera, and the generated matching dataset [9] which is much larger in volume but created
synthetically. In the following sections, we discuss our results in those two datasets.

4.2.1 Ratio loss vs. margin loss

Fig 2 shows the performance of the same network trained for the same number of epochs on
the Liberty dataset. We report the mAP of image matching in the Oxford dataset. It can be
observed that the margin based loss increases the performance as more epochs are used in
the training process. No over-fitting is noticed when training and testing patch classification

8 BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

1 5 10 20 30 40 50 60

m
A

P

epoch

DoG

margin-ranking
w/ anchor swap

(a)

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

1 5 10 20 30 40 50 60

m
A

P

epoch

DoG
ratio

w/ anchor swap

(b)

 0.865

 0.87

 0.875

 0.88

 0.885

 0.89

1 5 10 20 30 40 50 60

m
A

P

epoch

HarAff
margin-ranking
w/ anchor swap

(c)

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

1 5 10 20 30 40 50 60

m
A

P

epoch

HarAff
ratio

w/ anchor swap

(d)

Figure 2: Ratio based loss function overfits in the process of separating the positive and
negative pairs within a triplet, and does not perform well in the nearest neighbour match-
ing experiment. On the contrary, learning with triplets and margin ranking does not suffer
from this problem which shows that ranking methods are more suitable for nearest neighbor
matching scenarios.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

bark bikes boat graf leuven trees ubc wall mean

m
A

P

Oxford-DoG

SIFT
DCompare

DCompare-2str

DeepDesc
MatchNet

Tfeat-m

Tfeat-m*
Tfeat-r

Tfeat-r*

(a)

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

bark bikes boat graf leuven trees ubc wall mean

Oxford-HarAff

SIFT
DCompare

DCompare-2str

DeepDesc
MatchNet

Tfeat-m

Tfeat-m*
Tfeat-r

Tfeat-r*

(b)

Figure 3: Evaluation on the Oxford image matching dataset [16], for two different types of
feature extractors, DoG and HarrisAffine.

(e.g. training with ratio loss on Liberty and testing on Yosemite or Notredame). Interestingly,
the ratio loss seems to decrease the patch matching performance as the network is trained for
more epochs. This also hints that other methods from the literature that were only tested in
the patch classification scenario, may not perform well in matching. In our view, this shows
that evaluating descriptors only in terms of ROC curves is not representative for realistic
matching scenarios.

Finally, the results show that the loss functions with anchor swapping perform better
than without swapping. Note that this simple technique can lead to improved results with no
additional computational overhead.

4.2.2 Keypoint matching

Figure 3 presents the mAP results for Oxford benchmark, across all image sequences from
the Oxford dataset, for two different keypoint detectors, DoG and Harris-Affine. Note that
all networks are trained on DoG keypoints. In the case of our ratio loss, we use the networks
from the first epoch, since all the next epochs would exhibit lower performance (cf. Fig 2).
In the case of the DoG keypoints, our networks outperform all the others in terms of mAP.
The second best performing descriptor is the DeepDesc descriptor from [19]. We stress again
here, that this descriptor was below the state of the art in terms of ROC curves and FPR95
as shown in Table 1. This confirms our findings that the classification benchmark is not a
representative measure for the common real-world application of descriptors which often
relies on nearest neighbor matching. When using Harris-Affine keypoints our descriptor still
outperforms the others, although with a smaller margin.

BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS 9

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
A

P
 -

 D
o
G

Generated-matching dataset (synthetic transformations)

SIFT
DCompare

DCompare-2str

DeepDesc
MatchNet

Tfeat-m

Tfeat-m*
Tfeat-r

Tfeat-r*

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

blur1 blur2 blur3 blur4
light1

light2
light3

light4
nonlnr1

nonlnr2
nonlnr3

persp1
persp2

persp3
persp4

rotat1
rotat2

rotat3
zoom1

zoom2
zoom3

zoom4
zoom5

mean

m
A

P
 -

 H
a
rA
ff

Figure 4: Evaluation on the generated-matching dataset [9], for two different types of feature
extractors, DoG and HarrisAffine.

4.2.3 Image transformations

Figure 4 shows the results across various synthetic transformations of image pairs. Our de-
scriptor gives the top scores in most sequences. It is also worth noting, that even though this
dataset has some severe deformations as well as nonlinear filtering, the overall performance
for both types of feature extractors is higher than for the Oxford dataset. This shows that
synthetic deformations are less challenging for descriptors than some real-world changes as
the ones found in Oxford dataset.

4.3 Efficiency
One of the main motivations behind this work, was the need for a fast and practical feature
descriptor based on CNN. The small network trained with triplets that we used in our exper-
iments, is very efficient in terms of descriptor extraction time. We compare the extraction
time per patch, averaged over 20K patches, of recently introduced convolutional feature de-
scriptors. The extraction is done with NVIDIA Titan X GPU. Our descriptor is 10 times
faster than DeepCompare [24], and 50 times faster than MatchNet [11] and DeepDesc [19].
In fact, when running on GPU, we reach speeds of 10µs per patch which is comparable with
the CPU speeds of the fast binary descriptors[4]. This is a significant advantage over the
previously proposed descriptors and makes CNN based descriptors applicable to practical
problems with large datasets.

4.4 Conclusion
This work introduced a new approach to training CNN architecture for extracting local image
descriptors in the context of patch matching. The results show that using triplets for training
results in a better descriptor and faster learning. The networks can be simplified and extract
features with a speed comparable to BRIEF. Also the dimensionality can be significantly
reduced compared to other CNN based descriptors. We show that due to these properties
the proposed network is less prone to over-fitting and has good generalisation properties. In
addition, the high computational cost of hard negative mining has been successfully replaced
by the very efficient triplet based loss.

We also demonstrate that ratio-loss based methods are more suitable for patch pair clas-
sification, and margin-loss based methods work better in nearest neighbour matching appli-

10 BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS

cations. This indicates that a good performance on patch classification does not necessarily
generalise to a good performance in nearest neighbour based frameworks.

We provide all the learned models and the training code for all the variants at https:
//github.com/vbalnt/tfeat.

5 Acknowledgements

This work was supported by EPSRC project EP/N007743/1 and partially supported by the
spanish project FireDMMI (TIN2014- 56919-C3-2-R).

References
[1] M. S. Aurelien Bellet, Amaury Habrard. A survey on metric learning for feature vectors

and structured data. Arxiv, 2010.
[2] S. Sinha, J.M. Frahm, M. Pollefeys and Y. Genc. Workshop on Edge Computing Using

New Commodity Architectures. 2006.
[3] L. Bottou. Stochastic gradient tricks. Neural Networks, Tricks of the Trade, Reloaded,

pp 430–445, 2012.
[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary Robust Independent

Elementary Features. In ECCV , 2010.
[5] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shel-

hamer. CUDNN: Efficient primitives for deep learning. Arxiv, 2014.
[6] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for

machine learning. In BigLearn, NIPS Workshop, 2011.
[7] J. Dong and S. Soatto. Domain-size pooling in local descriptors: DSP-SIFT. In CVPR

, 2015.
[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection

with discriminatively trained part based models. PAMI, 32(9):1627–1645, 2010.
[9] P. Fischer, A. Dosovitskiy, and T. Brox. Descriptor matching with convolutional neural

networks: a comparison to sift. Arxiv, 2014.
[10] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant

mapping. In CVPR, 2006.
[11] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. Matchnet: Unifying feature

and metric learning for patch-based matching. In CVPR, 2015.
[12] E. Hoffer and N. Ailon. Deep metric learning using triplet network. Arxiv, 2014.
[13] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,

2015.
[14] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–

110, 2004.
[15] G. H. M. Brown and S. Winder. Discriminative learning of local image descriptors.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1), pp.43-57,
2011.

[16] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. PAMI,
pp 257–263, 2003.

[17] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors.
IJCV, 60(1):63–86, 2004.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

BALNTAS ET AL.: LEARNING LOCAL FEATURE DESCRIPTORS WITH TRIPLETS 11

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, pp 1–42, 2015.

[19] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer. Dis-
criminative learning of deep convolutional feature point descriptors. In ICCV, 2015.

[20] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descriptors using
convex optimisation. PAMI, 36(8),pp 1573-1585, 2014.

[21] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu.
Learning fine grained image similarity with deep ranking. CVPR, 2014.

[22] S. Winder, G. Hua, and M. Brown. Picking the best daisy. In CVPR, 2009.
[23] P. Wohlhart and V. Lepetit. Learning Descriptors for Object Recognition and 3D Pose

Estimation. In CVPR, 2015.
[24] S. Zagoruyko and N. Komodakis. Learning to compare image patches via convolutional

neural networks. In CVPR, 2015.
[25] M. Jahrer, M. Grabner, and H. Bischof. Learned local descriptors for recognition and

matching. In Computer Vision Winter Workshop, 2008
[26] C. Osendorfer, J. Bayer, S. Urban, and P. Van Der Smagt. Convolutional neural net-

works learn compact local image descriptors. In ICONIP 2013
[27] A. Vedaldi and B. Fulkerson VLFeat: An Open and Portable Library of Computer

Vision Algorithms, 2008.

