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Abstract

Aerial image analysis at a semantic level is important in many applications with
strong potential impact in industry and consumer use, such as automated mapping, urban
planning, real estate, environment monitoring or disaster relief. The problem is enjoying
a great interest in computer vision and remote sensing, due to the increasing compu-
tational power and improvements in automated image understanding algorithms. In this
paper, we address the task of automatic geolocalization of aerial images from recognition
and matching of roads and intersections. Our proposed method is a novel contribution
in the literature that could enable many applications of aerial image analysis where GPS
data is not available. We offer a complete pipeline for geolocalization, from the detec-
tion of roads and intersections, to the identification of the enclosing geographic region
by matching detected intersections to previously learned manually labeled ones. This
step is followed by accurate geometric alignment between the detected roads and the
manually labeled maps. We test on a novel dataset with aerial images of two European
cities and use the publicly available OpenStreetMap project for collecting ground truth
roads annotations. We show in extensive experiments that our approach produces highly
accurate localizations in the challenging case when we train on images from one city and
test on the other, with relatively poor quality of the aerial images. We also show that the
alignment between detected roads and pre-stored manual annotations can be effectively
used for improving the quality of road detection.

1 Introduction
The ability to accurately recognize different categories of objects from aerial imagery, such
as roads and buildings, is of great importance in understanding the world from above, with
many useful applications ranging from mapping and urban planning to environmental mon-
itoring. This domain is starting a flourishing period, as the several technological and com-
putational aspects involved, both at the hardware and algorithms levels, form very powerful
systems that are suitable for practical, real-world tasks. In this paper, we address two im-
portant problems that are not sufficiently studied in the literature. We are among the first,
to our best knowledge, to propose a method for automatic geo-localization in aerial images
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without GPS information, by putting in correspondence the real world images with the pub-
licly available, manually labeled maps from the OpenStreetMap (OSM) project 1. We solve
the task by first learning to detect roads and intersections in aerial images, and then learn to
identify specific intersections based on a high level descriptor that puts in correspondence
the detected intersections from real world images to intersections detected in the manually
labeled OSM maps. Accurate localization is then obtained by the geometric alignment of the
two road maps - the detected ones and the OSM annotations - at the final step. We present
how the alignment to the OSM maps could be used to improve the quality of the detected
roads and intersections. We also show that accurate geometric registration of roads and inter-
sections can improve both recognition of the roads and the initial localization. A key insight
of our approach is the observation that intersections tend to have a unique road pattern sur-
rounding them and thus can play a key role in localization, by reducing this difficult task to
a sparse feature matching problem followed by a local refined roadmap alignment. For the
accurate detection of roads we used a recent state of the art method [19] that is based on
a dual stream local-global deep CNN, which takes advantage of both the local appearance
of an object as well as the larger contextual region around the object of interest, in order to
augment its local appearance and thus improve recognition performance.

2 Related work on road detection and localization

Road detection in aerial imagery has been traditionally addressed by detection methods that
use manually designed features [8, 12, 14, 18, 21]. The recent success of convolutional neu-
ral networks [13, 25] has led to greatly improved accuracy and robust road detection [22, 24].
As shown in [19], the lack of good quality aerial images, as well as clutter and occlusion can
greatly affect and significantly degrade the learning and performance even for top, state-of-
the-art architectures. Post-processing is often required in aerial image analysis [21], but it
is not expected to solve the most difficult cases. There are many approaches proposed for
road detection, such as following road tracks [10], local context modeling with CRFs [23],
minimum path methods [26] or using neural networks [22]. Arguably, free road vectors are
widely available for most of the planet. However, they are sometimes misaligned and have a
poor level of detail. Therefore, some methods attempt to correct these road vectors by align-
ing them to real rectified aerial images [20]. Topological road improvement methods trace
back to [7]. A more recent approach [23] uses Conditional Random Fields in conjunction
with a minimum cost path algorithm for improving topology. The authors take into account
various cues, such as context, cars, smoothness between road widths in order to offset road
vertices to their real location.

There are several methods related to automatic geolocalization from aerial images, but
the tasks they address is different from ours. Some use known landmarks, others ground
floor images or extra GPS or IMU measurements. Most employ sparse, manually designed
features - ours being the first, to the best of our knowledge, to automatically localize aerial
images from recognition and matching of semantic categories, such as roads and intersec-
tions, in the context of deep neural networks. More specifically, related to our work, ge-
olocalization for unmanned aerial vehicles (UAVs) using sparse manually designed features
has been proposed in [3], while accurate, sub-pixel manhole localization has been proposed
using known landmarks [5]. A road following strategy for UAVs with lost GPS signal is

1https://www.openstreetmap.org/
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Figure 1: Framework overview: ground truth road maps and intersections are extracted from
OSM, with known locations (left pathway). High-level descriptors are extracted from each
intersection and stored offline. At test time, roads and intersections are automatically de-
tected in aerial images using the dual stream CNN model [19]. The same type of intersec-
tions descriptors are extracted and matched against the OSM set of descriptors in order to
localize a given detected intersection in the aerial image. This provides an initial localization
that is further improved by geometric alignment. This also helps in intersection identification
- only pairs of intersections with high alignment score are put in correspondence.

described in [6]. Other authors augment a feature-based approach by fusing camera input
with GPU and inertial measurement unit (IMU) outputs. They propose a monocular SLAM
approach without visual beacons [4, 11], which yields an error of about 5m. Given the
global coverage of aerial images, there has been interest in geolocalizing a ground image us-
ing ground-aerial image pairs for training [16, 17, 28]. Geolocalizing single ground images
has also been recently experimented in [27]. An approach loosely related to geolocalization
proposed the study of street patterns in order to identify the city class [1].

3 Our approach

Our method has several stages: 1) road pixel-wise classification in a given aerial image; 2)
detection of intersections based on the detected roads; 3) identification of a given intersection
by matching its surrounding region to regions from a stored dataset of OpenStreetMap(OSM)
road and intersections maps. At this stage we keep, for each test intersection, a list of clos-
est OSM intersections in the intersections descriptor space; 4) accurate geometric alignment
for improved localization and road detection enhancement. At this stage we keep from the
list of candidate intersection matches the one with minimum geometric alignment error. In
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this work we focus on recognition and localization of given detected intersection. We use
intersections as anchors for localization for three reasons. First, once intersections are found
and images are aligned to known road maps, the location of any given point in the image
follows immediately. Second, intersections are sparse and require very little computational
and storage costs for recognition and matching. Third, they are also sufficiently discrimi-
native localization when their surrounding area is taken into account. They tend to have a
unique pattern of roads in the neighborhood region, which acts as a unique fingerprint that is
useful for location recognition. We present an overview of our approach in Figure 1. Note
that while we did not use any GPS information for localization, we assumed that we know
the orientation of the image with respect to the cardinal points - an information that is easily
obtained with a compass in a real world situation. To account for small errors in orientation
estimation we added a random Gaussian noise to the test image rotation angle with 0 mean
and standard deviation of 5 degrees. While the added noise affected slightly the performance
of intersection recognition, it did not influence the final geometric alignment stage that is
affine invariant. We detail the stages of our pipeline next.

3.1 Finding roads and intersections

Figure 2: Our system for detection of roads and intersections. We first detect roads in the
image by classifying each individual pixel using the recently proposed dual-stream model,
that processes information along two pathways - a local one for reasoning based on local
appearance, and a global pathway for image interpretation at the level of the larger contextual
region. The detected roadmap is then passed to an adjusted AlexNet model trained for the
task of intersection recognition. Intersections are detected by a scanning window approach
followed by non-maxima suppression.
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Road detection: We train a state-of-the-art dual stream local-global Convolutional Neural
Network [19] (LG-Net) on the task of road detection (Figure 2). The network combines
two pathways, one based on an adjusted VGG-Net [25] that uses local appearance informa-
tion (a local 64x64 patch surrounding the road region) and the other, based on an adjusted
AlexNet [13], which takes as input a significantly larger neighborhood (256x256) for con-
textual reasoning. The two pathways are joined in the last FC layers and the output is a small
16x16 center patch having 1’s for road pixels and zeros otherwise. The final road map is
obtained by dividing the larger aerial images into disjoint 16x16 patches, which are classi-
fied independently. In the experiments presented in [19] the local-global network achieves
an F-measure that is consistently superior to a network that has only the local pathway. Also,
compared to previous contextual approaches to road detection, ours avoids hand crafted cues,
such as the nearby cars and consistent road width [20] or nearby lines [29], and effectively
learns to reason about context by considering the larger area containing the road.

Intersection detection: For the detection of intersections, we trained an adjusted AlexNet
architecture, modified to output a single class to signal the presence or absence of an inter-
section at a given point in the image. We considered as input several channels containing
the original RGB image as well as the estimated road map provided by LG-Net. Including
the channels with the original RGB low level signal improved the maximum detection F-
measure from 65.18% to 67.71%, in our experiments, using a scanning window approach
with non-maxima suppression. The most relevant of the two types of input is the estimated
road map that represents signal at a higher, semantic level of image interpretation. Note that
intersections, by definition, are directly related to the existence of at least two roads that
intersect. In order to speed up the detection of intersections we classified pixels on the grid
(with steps of 10 pixels) and obtained the final dense intersections map by interpolation. This
resulted in a speedup by two orders of magnitude at the cost of a relatively small decrease
in detection quality. In Figure 2, we also present the system for intersection detection with
an example estimated map of intersections. We notice that most intersections are detected,
while, in some cases, intersections seem to be correctly detected in the image but are not
present in the OSM, which we considered as ground truth. Note that such inconsistencies
between images and manually labeled roads are not uncommon in OSM.

3.2 Automatic geolocalization

We represent each intersection by a descriptor which is learned such that identical intersec-
tions from detected roads and OSM roads should have similar descriptors, while descriptors
for different intersections should be as far separated as possible. For extracting the inter-
section descriptors, we start from the modified AlexNet trained for intersection detection,
such that the last FC layer of 4096 elements is used as a descriptor. Intersections from the
detected road maps will be matched against a database from OSM using Euclidean distances
in descriptor space. While this approach proves to be very effective, we further improve the
performance by fine-tuning the network for adjusting distances in descriptor space in order
to improve the matching performance. (Figure 3). Localization is further refined by geo-
metric alignment between the estimated roads and the OSM roads in the regions centered
at the intersections that have been put in correspondence. We detail next the algorithms for
matching and localization.
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Descriptor extraction and learning: We extract descriptors for intersection images in a
way that is similar to [15]. Moreover, we fine-tune the descriptor extracted for intersections
from the neural network, so as to minimize the distance between identical intersections and
maximize the distances between dissimilar ones. First, we train the modified Alexnet for in-
tersection detection. Second we fine tune the network weights in a Siamese-like fashion, with
corresponding intersection pairs from estimated road maps and OSM, respectively, marked
as positive and different intersection pairs marked as negative. See [9] for details on this type
of training. The robust loss formula we use takes in consideration the ground truth label y,
which is 1 if the intersections are the same and 0 otherwise, the squared Euclidean distance
d between pairs of intersections descriptors and a margin m, which gives zero penalty to de-
scriptors a and b from different intersections that are at a distance of at least m in descriptor
space:

L(y) =
1
2

yd +
1
2
(1− y)max(m−d,0)). (1)

Intersection identification: The learning phase creates a descriptor for each intersection
image. Similar images will correspond to descriptors that are close in Euclidean space. When
matching two regions centered at two candidate intersection matches, we also consider the
descriptors of the nearby intersections. This results in a bipartite graph matching problem for
matching two sets of descriptors. It is possible, as nearby intersections usually have similar
regions to wrongly match detected intersections to their neighbor OSM intersections, but
such local misplacements are most often fixed at the final geometric alignment step when all
the roads details in a region are taken into account. Next, we present our method for finding
correspondences between detected intersections and the ones from OSM, by matching sets
of intersections from their corresponding regions. These neighborhoods of a certain radius
centered at the intersections of interest. As our experiments show, the larger this radius, the
more accurate the intersection identification. This is expected, as larger regions include more
road structures that are unique to a specific urban area.

Algorithm 1 Intersection identification by matching regions
for each road detected test intersection iT and given radius w do

Gather roads and intersections from region intersection region Rw(iT ).
for each label OSM intersection iL do

Gather roads and intersections from region Rw(iL).
Compute matching distance between regions:

1) Get nearest neighbor distance t j between
each intersection i j in Rw(iT ) to intersections from Rw(iL).
2) Compute sum of 1NN distances St(iT , iL) = ∑ j t j.
3) Get nearest neighbor distance l j between
each intersection j in Rw(iL) to intersections from Rw(iT ).
4) Compute sum of 1NN reverse distances Sl(iL, iT ) = ∑ j l j.
5) Set distance between intersections: d(iT , iL) = (St(iT , iL)+Sl(iL, iT ))/2.

end for
return list Lk(iT ) of k closest iL’s OSM intersections to iT using distance d(iT , iL).
end for
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Geometric alignment: Although a location can be theoretically determined by a single
correctly identified intersection and a correct rotation with respect to the cardinal points,
in order to have a robust match and further improve the initial localization (which could
be off due to intersection detection misalignments), we also estimate for a given pair of
candidate intersection matches (iT , iL), a geometric affine transformation between the roads
in regions Rw(iT ) and Rw(iL) Then, a misalignment measure is computed such that most
outlier candidates in the list Lk(iT ) of a given test intersection (found using Algorithm 1)
iT are removed. The 2D registration procedure is performed by sampling road points from
the test and query images and computing Shape Context descriptors[2] at sampled locations.
Using kNN with Shape Context descriptors, a list of candidate correspondences are found
and an affine transform is robustly estimated using RANSAC. Then, the Euclidean distance
transform is used in order to compute the symmetrized Chamfer distance between the two
registered road maps, as a measure of misalignment - which, in practice yields significantly
better results. Other approaches (such as [20]) also proposed road alignment, but treated the
problem as local road vertex alignment. Ours is fast and effective for rejection of outlier
intersection matches, but since our outlook is global, a throughout comparison is needed
in order to assess performance on road enhancement. A more detailed overview of our
localization algorithm is presented below:

Algorithm 2 Geolocalization algorithm
for each road intersection iT do

1) Find list Lk(iT ) of k candidate matches iL from OSM using Algorithm 1.
2) Compute k symmetric Chamfer distances C(iT , iL) between

region Rw(iT ) and the corresponding regions Rw(iL) of each iL ∈ Lk(iT ).
3) Return aligned i∗L from Lk(iT ) with minimum distance C(iT , i∗L).

end for

3.3 Enhancing the road map

We can use the aligned OSM road maps to improve the detected roads and vice-versa - since
OSM road maps sometimes contain wrongly labeled roads, or do not reflect recent road
changes. Below, we present a simple but effective method: 1) we apply a soft dilation proce-
dure on the estimated road map and multiply it, pixel by pixel, with the aligned OSM map;
2) the resulted soft output is then smoothed with a Gaussian filter and the result is thinned
using a standard non-maximum suppression method for boundary detection. 3) after thin-
ning the roads are dilated back, to achieve the initial thickness. The results are substantially
better, as expected, greatly improving the similarity between the roads found and the OSM
roads - the f-measure in road detection improved from 66.5% to 93.9%. Important note:
this procedure does not use ground truth localization, but only the entire OSM dataset and
relies on the accuracy of the automatic matching and alignment algorithms. It has proved
generally effective even when the localization was wrong but the road structure between the
matched OSM region and the test image was similar. We present qualitative results in Figure
4.
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4 Experimental analysis

Two Cities Dataset: We collected aerial images of two European cities (termed A and B)
and automatically aligned them with the OSM road maps for training and evaluation. We
plan to make the dataset public. The images are 600x600px, have the spatial resolution of
1m/pixel and cover an area of about 70 sq. Km each. City A has 4027 images, while city
B has 3177. Each image is centered on an intersection. For ground truth, we extracted
the corresponding road images from OSM. We use the images from city A for training and
validation and images from city B for testing. The quality of the images is fairly low, which
makes the task of road detection and localization very challenging, even for the human eye
(see example images in Figure 4 for original image quality and road enhancement results).

Figure 3 presents the average performance measures after geolocalizing all 3177 intersec-
tions from city B. We present intersection identification (recognition) rates versus the region
radius (top left plot). As expected performance increases as the region radius increases, at
the cost of more computation and data being required. We also demonstrate that the geomet-
ric alignment phase significantly increase performance, bringing it close to the 90% mark
even when the region radius is small. The plot also presents the consistent improvement
brought by fine tuning the descriptors to optimize intersection matching. The other three
plots present the distribution of localization errors in meters. We notice that most errors
(around or above 90% of them) are below 2.5 meters, that is below 3 pixels for the image
resolution available in our experiments. This error is very small considering the poor image
quality and the errors present in the OSM itself, which was considered as ground truth. For
these reasons we believe that our results demonstrate high level of localization accuracy for
our system, which could prove very effective in most cases when GPS signal is lost.

Computational details: Training time for road detection and intersections descriptor learn-
ing took between 3-5 days on a GeForce GTX 970 GPU with 4GB memory and 1664 CUDA
cores. At test time, road extraction speed is 0.2km2/s, at a spatial resolution of 1m/pixel and
represents the most expensive task for our geolocalization pipeline. Intersection detection
takes 0.7km2/s, while localization by means of kNN in intersection descriptor space and
geometric alignment is an order of magnitude faster in the context of searching within the
limits of a 70km2 city.

5 Discussion and Conclusions

We have presented a complete system for geo-localization from aerial images in the absence
of GPS information. Our proposed pipeline includes many contributions with efficient meth-
ods for road and intersection detection, intersection recognition with geometric alignment for
accurate localization, followed by road detection enhancement.

There are many potential applications for our approach in areas such as urban planning,
tracking structural changes, updating of existing maps and environmental monitoring. Our
system could also be used in the context of unmanned aerial vehicles, in order to correct their
GPS localization or to make their flight possible even when GPS signal is lost. We estimate
that if the search area was only 5 times smaller than in our experiments, the automatic local-
ization would be tractable for on-board processing, in near real-time, for current generation
of NVIDIA’s embedded GPUs (Jetson TX1). For nighttime use for example, the roads are
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Figure 3: Performance evaluation. Top left plot: performance increases with the region ra-
dius. Note that intersections descriptor learning as well as the final geometric alignment
method significantly improve localization accuracy. The other three plots, showing distribu-
tion of errors per distance in meters show that our approach is able to correctly localize an
intersection with an error of maximum 2.5 meters in at least 90% of cases.

generally ’extracted’ by means of street lightning, which could make the problem of road
and intersection detection easier - thus even more accessible for on-board processing.

We have proven that geolocalization from images alone, using learned high level features
is feasible and can achieve a high level of accuracy. It can be used as a GPS alternative or
in conjunction with GPS, bringing valuable contributions to the literature and also to many
applications that require offline or online, real-time processing.

As future work, detection speed could be significantly improved (e.g., by using fully
convolutional networks for road and intersection detection) and the search space could be
expanded to a cluster of cities. Extensive testing needs to be carried out in order to com-
pare this method to more conservative approaches, such as sensor fusion or SLAM. Road
enhancement shall also be compared with one of the existing approaches.
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Figure 4: Enhancing the road detection by region recognition and geometric alignment to
OSM roads. Our simple procedure, described in the text, could be useful for both improving
the detected road map in the test image and correcting the OSM manually labeled maps.
Note that for road enhancement we used the automatically matched and aligned regions
from OSM using the initial estimated road maps, and NOT the ground truth matches.
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