
LYU, ZEPEDA, PÉREZ: US-SVM 1

Maximum Margin Linear Classifiers in
Unions of Subspaces

Xinrui Lyu1,2

xinrui.lyu@epfl.ch

Joaquin Zepeda1

joaquin.zepeda@technicolor.com

Patrick Pérez1

patrick.perez@technicolor.com

1 Technicolor
35576, Cesson-Sevigne, France

2 École Polytechnique Fédérale de
Lausanne (EPFL)
CH-1015, Lausanne, Switzerland

Abstract

In this work, we propose a framework, dubbed Union-of-Subspaces SVM (US-SVM),
to learn linear classifiers as sparse codes over a learned dictionary. In contrast to discrim-
inative sparse coding with a learned dictionary, it is not the data but the classifiers that
are sparsely encoded. Experiments in visual categorization demonstrate that, at train-
ing time, the joint learning of the classifiers and of the over-complete dictionary allows
the discovery and sharing of mid-level attributes. The resulting classifiers further have a
very compact representation in the learned dictionaries, offering substantial performance
advantages over standard SVM classifiers for a fixed representation sparsity. This high
degree of sparsity of our classifier also provides computational gains, especially in the
presence of numerous classes. In addition, the learned atoms can help identify several
intra-class modalities.

1 Introduction
The submission of Krizhevsky et al. [20] in the 2012 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) has had a tremendous impact on the image classification com-
munity and beyond. By obtaining results that outperformed the state-of-the-art at the time
[4] by close to ten absolute percentage points, Krizhevsky et al. established experimentally
that deeply-stacked Convolutional Neural Networks (CNNs) can be used to learn multi-class
image classification systems from end to end.

Importantly, almost the entirety of the CNN pipeline can be interpreted as a feature ex-
traction mechanism, with subsequent layers operating on larger patches of the input image in
a process reminiscent of local descriptor spatial pyramid pooling methods [16, 24]. It is only
the last layer of the CNN which acts as a classifier, and in this respect, recent research efforts
have focused less on the classification mechanism in favor of advancing feature extraction
methods. The most common classification layer used in CNN architectures is the soft-max
classifier [19, 20], but other standard approaches indeed include Support Vector Machine
(SVM) based methods such as banks of linear SVMs or ranking SVMs [5, 22, 23]. When
using the activation coefficients at the input of the classification layer as a generic feature
extractor [14, 21, 32] on new target classes not within the set of training classes, it is indeed
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common to use a standard `2-penalized linear SVM classifier given its training and testing
complexity advantages.

Hence, the importance of the linear SVM in researchers’ classification toolbox is not di-
minished with the arrival of CNN architectures, and hence we propose herein a novel method
to learn SVM classifiers. Our approach picks up the line of work on dictionary learning for
sparse representations – we propose to learn SVM classifiers that can be represented sparsely
with a dictionary which is learned for the classification task. While previous works have ad-
dressed learning supervised dictionaries for classification, they have all focused on enforcing
the sparsity of representation of the feature vectors and not of the classifiers, like we do.

Forcing the classifier to be sparse in a learned dictionary exposes a number of interesting
benefits. One benefit concerns the compactness of the representation – classifiers with com-
pact representations can be stored more efficiently and, importantly, they incur lower compu-
tational cost both at training and testing times. Another benefit is that the atoms (columns) of
the learned dictionary will inherit semantic properties shared by different classes and hence
can often be interpreted as semantic attributes, thus opening a possible path to weakly super-
vised attribute discovery. In a similar manner, atoms of the learned dictionary will often cor-
respond to modalities of the underlying feature distribution that can likewise have interesting
semantic interpretations. Forcing the classifier to be sparse using a learned dictionary can
also be interpreted as a novel SVM regularization scheme. Unlike other schemes that con-
strain the norm of the classifier, our regularization requires that all classifiers be represented
in terms of a common dictionary, in effect enabling the system to leverage the annotations
for all classes when learning any given class.

We evaluate our method using both unsupervised features as well as very recent, CNN-
derived features, testing it on well known image classification datasets (PASCAL VOC
2007 [11] and ImageNet [9]). Our experiments establish that our approach results in very
sparse representations of classifiers that outperform other SVM classifiers, and with learned
dictionaries that carry out automatic attribute and modality discovery as part of the learning
process.

The remainder of the paper is organized as follows: In Section 2 we review the liter-
ature related to our method, which we then introduce in Section 3 along with a proposed
optimization algorithm and benefits. We then present experimental results in Section 4 and
concluding remarks in the last section.

Notation: We let [ak]k denote the matrix [a1,a2, . . .] and [ak]k the row vector [a1,a2, . . .].

2 Background
In this section, we give a brief overview of sparse coding methods and the related super-
vised and unsupervised dictionary learning algorithms. We also discuss the advantages and
drawbacks of various types of SVMs.

Dictionary learning. Dictionaries D ∈ Rd×A, with A > d, for sparse coding were first
learned in an unsupervised manner [1, 10, 26, 30, 36, 40] by approximating the training
vectors {xi ∈ Rd}M

i=1 with sparse linear combinations of the columns (called atoms) of D:

argmin
D

1
M

M

∑
i=1

e(xi,D), where e(x,D), min
z
‖x−Dz‖2

2 +β‖z‖1. (1)

Following the self-taught learning approach [31], such dictionaries are used to build un-
supervised features by aggregating the sparse codes e(x,D) of image patches into a global
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image feature using, for example, max-pooling and spatial pyramids [37].
More recent dictionary learning methods exist that employ a fully supervised framework

by relying, for example, on expressions for ∂z
∂D . The work of [25] is one of the few to con-

sider a sparse coding objective different from the approximation error e(x,D) in (1), relying
instead on a hybrid objective that includes both the classification error and the approxima-
tion error. Our method uses rather a purely classification-based sparse-coding objective,
dispensing entirely of the reconstruction component of the objective, similar to the objective
of `1-penalized SVMs [42]. Furthermore, our method is the first one to address sparse de-
compositions of the classifier vectors, as all previous methods have learned dictionaries to
decompose the input feature vectors. Our approach can be interpreted as a new SVM regu-
larization scheme, where the regularizer enforces the sparsity of the classifier in a dictionary
learned from all training classes. Not only does this offer computational advantages both at
training and test times, but it also allows the learning of a few mid-level “attributes" that can
be either shared across classes or used to distinguish several modalities within a given class.

Learning linear classifiers. The standard `2-penalized Support Vector Machine (`2-
SVM) classifier obtained from

argmin
(w,b)

1
M

M

∑
i=1

`(w,b,xi,yi)+
α
2
‖w‖2

2, `(w,b,x,y), max
(
0,1− y(w>x+b)

)
, (2)

where yi is the label of training vector xi, can be seen as a sparse linear combination of
training vectors (those that are support vectors), a consequence of the representer theorem
[17]. In practice, however, the number of support vectors is comparable to the dimensionality
of the feature space and hence the representation is not truly sparse. Yet the `2-SVM has one
important benefit in that it maximizes the margin between classes, and this translates into
better generalization performance.

The `1-penalized SVM (`1-SVM), obtained by substituting ‖w‖2
2 with ‖w‖1 in (2), pro-

duces weight vectors w that are sparse. The `1-SVM has an advantage over the `2-SVM
in classifying high-dimensional feature vectors [38] since the `1 penalty effectively carries
out automatic feature variable selection, accordingly resulting in lower test-time complexity.
Also, `1-SVM outperforms `2-SVM in the scenarios where the feature vectors are sparse or
when there are redundant noise features [42].

The method we present herein can be seen as a way to extend these two benefits of
`1-SVM (test-time complexity and feature selection) to the case where feature vectors are
dense, while at the same time retaining the max-margin formulation of `2-SVM. Similarly
to `2-SVM, our method selects a sparse subset of vectors and forms a linear classifier from a
linear combination of this sparse subset. Yet our approach learns an overcomplete dictionary
from which to select this subset, further achieving truly sparse representations, whereas the
`2-SVM approach selects this subset from the (overcomplete) set of training vectors, and
further requires subsets comparable in size to the dimensionality of the feature space.

Various variants of the SVM problem exist that explore alternative regularization schemes,
including the Relative Margin Machine [35], methods relying on Non-negative Matrix Fac-
torization (NMF) [15], the Power SVM method of [41], and various low-complexity solvers
relying on hard mining [13] and stochastic gradient descent [34]. It is important to note that
the method we propose in this work is complementary to all of the above approaches, and
the possible combinations of our method and the above described methods are indeed an
interesting research direction.
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3 Learning classifiers in unions of subspaces
In this work we propose learning linear classifiers that have the form w = Dz, where D ∈
Rd×A is the dictionary matrix, and z ∈ RA is a sparse vector. We refer to such classifiers as
D-sparse classifiers. We first focus on learning D-sparse classifiers given D, subsequently
proposing a way to learn D.

3.1 Sparse coding of classifiers

Given the dictionary D, learning a linear classifier Dz that is D-sparse amounts to learning
the sparse vector z. A suitable formulation for z can be derived by substituting w = Dz
into the original SVM learning objective in (2) and appending an additive sparsity-enforcing
penalty term β‖z‖1:

argmin
z,b

1
M

M

∑
i=1

f (D,z,b,xi,yi), where f (D,z,b,x,y), `(Dz,b,x,y)+
α
2
‖Dz‖2

2 +β‖z‖1. (3)

The learned linear classifiers w = Dz will exist in a union of subspaces, with each subspace
being the span of a small subset of atoms from D. Hence we refer to our proposed classifier
as a Union-of-Subspaces SVM (US-SVM).

Concerning the dimension (equivalent, under mild assumptions, to the number of columns
spanning the subspace) of each subspace, we note that it will vary between subspaces.The
average dimension over all subspaces, however, will be controlled by the regularization pa-
rameter β ≥ 0 which, similarly to α ≥ 0, needs to be set using cross-validation experiments.

Convexity. A positive consequence of the simplicity of the D-sparse constraint w = Dz
is that the US-SVM objective in (3) inherits the convexity of the SVM objective in (2):
Concerning the first two terms inside the summation of (3), the transformation w = Dz is
linear in z and hence z appears in (3) in the same form as w appears in (2). Accordingly,
these first two terms are convex in z for losses such as the hinge loss ` for which (2) is
convex in w. The `1 penalty in the third term is always convex and, since additions of
convex functions are convex, the problem is itself convex.

Special case when α > 0,β = 0. Two special cases are worth mentioning in relation to
(3). The first case is that when β = 0, which effectively removes the sparsity constraint from
the classifier. Assuming that D is square and full rank, we will have that ẑ = D−1ŵ, where
ŵ and ẑ are the optimal solutions, respectively, to (2) and (3).

If D is instead overcomplete and full rank, there will be an infinite number of solutions
ẑ each satisfying the under-determined system: ŵ = Dẑ. Hence, given the convexity of the
problem, in the case when β = 0, one can expect to retrieve a solution ẑ such that Dẑ is
solution of (2) as long as D ∈ Rd×A is full-rank with A≥ d.

Special case when α = 0,β > 0. A second special case is that when α is set to zero.
In this situation, we are removing the penalty that forces the `2 norm of the classifier to be
small, and this is the mechanism that ensures that the margin of SVM classifiers is large [29].
Hence this case needs special attention if we are to produce classifiers that generalize well.

In order to gain some insight concerning the margin when α = 0, we note that ‖w‖2 =
‖Dz‖2 ≤ ‖D‖2‖z‖2, where ‖D‖2 is the spectral matrix norm. Furthermore, for a posi-
tive constant chosen to be µ = maxx6=0

‖x‖2
‖x‖1 , we can write ‖x‖2 ≤ µ‖x‖1,∀x, and hence

‖Dz‖2 ≤ µ‖D‖2‖z‖1. Defining γ = 2β
µ‖D‖2 , we have that γ

2‖Dz‖2 ≤ β‖z‖1 and hence, when
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setting α = 0 in (3), the `1 penalty term can be interpreted as an upper bound on an implicit
penalty γ

2‖Dz‖2, and can thus be expected to have the desired effect on the margin of the
classifier. The resulting formulation further enjoys learning complexity advantages related
to the removal of the term α

2 ‖Dz‖2
2 and related terms in the gradient expressions required to

train the classifier (see Section 3.4). We establish this computational advantage empirically
in the results section.

3.2 Dictionary learning
The dictionary matrix required in (3) is crucial if one is to obtain classifiers that simultane-
ously perform well and have a sufficiently sparse representation in D. Hence we now propose
a learning algorithm that yields a dictionary D well suited to the task.

To this end, we assume that we are given a set of training feature vectors xi and labels
yik ∈ {−1,1} indicating the membership (when yik = 1) or absence (yik =−1) of feature vec-
tor i = 1, . . . ,M in class k = 1, . . . ,K. We also let yi , [yi1, . . . ,yiK ]

>, and drop the subscript
i when unnecessary.

Given the above training set, we can learn a dictionary by minimizing, over all K classes
and all M feature vectors in the training set, the US-SVM objective in (3):

argmin
D∈D,z1:K ,b1:K

1
KM

K

∑
k=1

M

∑
i=1

f (D,zk,bk,xi,yik) , (4)

where D is the convex set of matrices having columns (d j)
A
j=1 satisfying ‖d j‖2 ≤ 1. Re-

stricting the solution to this set removes scale ambiguity in the choice of D and z for a given
classifier Dz.

Convexity. Following the same argument as for the problem in (3), one can show that (4)
is convex in z or in D. However, given the fourth-order nature of the α

2 ‖Dz‖2
2 penalty term

inside f , the problem is not jointly convex in z and D. Even for the special case where α = 0
and this fourth order term disappears, the problem is not convex for common loss functions
such as the hinge loss due to a substraction of a second order term involving Dz.

3.3 Elastic net and non-negativity constraint
We further consider two variants of the learning problems presented in (3) and (4). In the
first variant, we substitute the `1 penalty term by an elastic net penalty term. This amounts
to substituting f in (3) and (4) with

f (D,z,b,x,y), `(Dz,b,x,y)+
α
2
‖Dz‖2

2 +β
(
r‖z‖1 +(1− r)‖z‖2

2
)
, r ∈ [0,1]. (5)

The elastic net approach makes the z-related penalty term strictly convex, thus providing a
unique solution of z when D is fixed [43].

We further consider restricting the sparse coefficients to be non-negative, z,z1, . . . ,zK ∈
RA
+. One motivation for this is that it reduces the number of local minima in the dictionary

learning problem of (4), as a given solution Dz can in general only be achieved with a specific
polarity of D when z is sufficiently sparse.

In the experiments section, we use US-SVM to refer to the original formulation in (3)
and (4), and US-SVM-E, US-SVM-N, and US-SVM-NE to refer, respectively, to the variants
using the elastic net regularizer, the non-negative constraint on the sparse coefficients, and
both of these simultaneously.
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3.4 Algorithm
We propose solving both problems (3) and (4) using Stochastic Gradient Descent (SGD) as
it is very efficient in situations where training data is abundant [33]. SGD can be used to
solve problems of the form g(θθθ ,S) = 1

M ∑M
i=1 Φ(θθθ ,Si), where θθθ denotes the parameters that

are being learned, S the annotated training set and Si one of the M training samples (for
classification, Si = (xi,yi)). At iteration t, SGD draws a random training sample Sit and
updates the parameters θθθ using θθθ t = θθθ t−1−λt∇θθθ Φ(θθθ t−1,Sit ). We use learning rates of the
form λt = λ/(t + t0) [3], finding suitable values for λ and t0 using cross-validation.

For the case when the number of parameters is too large, or when complicated depen-
dencies between parameters make differentiation difficult, one can use a Block-Coordinate
SGD (BC-SGD) variant. Letting θθθ = (θθθ 1, . . . ,θθθ Q), BC-SGD consists of updating the subset
of parameters in only one of the blocks θθθ qt at any given iteration t when applying SGD,
alternatively repeating the same block B times before moving to the next block.

Obtaining sparse z with SGD. Bottou [3] briefly discusses an SGD `1-SVM solver that
is very efficient and that we adapt to obtain sparse solutions z. The approach consists of
representing z as a difference of non-negative vectors, z = u−v with u,v ∈RA

+, accordingly
changing the `1 penalty β‖z‖1 to β (‖v‖1 + ‖u‖1). Note that, at the optimum, u and v will
have disjoint supports and hence ‖z‖1 = ‖u‖1 +‖v‖1. At each SGD step, the corresponding
algorithm works by updating u and v using the related sub-gradient, followed by a projection
onto the set of non-negative vectors.

Since often the resulting sparse vectors will be only nearly sparse, following the learning
procedure, we further prune from z the smaller-energy coefficients by specifying a target
sparsity level.

When solving the US-SVM problem in (3) using SGD, we let θθθ =(u,v,b) and Φ(θθθ ,x,y)=
f (D,u− v,b,x,y). When solving (4), θθθ = (D,u1,v1,b1 . . . ,vK ,uK ,bK) and Φ(θθθ ,x,y) =
∑K

k=1 f (D,uk−vk,bk,x,yk).
Gradient expressions. For completeness, we note that, when solving the US-SVM prob-

lem in (3) using SGD, θθθ = (u,v,b) and we use

Φ1(θθθ ,x,y) = f (D,u−v,b,x,y), (6)

where we employ the definition of f given in (5) as it is more general. Accordingly, the
sub-gradient required for SGD when using the decomposition z = u−v with u,v ∈ RA

+ can
be assembled from

∇uΦ1 =− ŷD>x+αD>Dz+ rβ1+2(1− r)z,

∇vΦ1 =+ ŷD>x−αD>Dz+ rβ1−2(1− r)z,
(7)

where 1 is the ones vector and

ŷ = y if y
(
(Dz)>x+b

)
< 1, 0 otherwise. (8)

We can likewise derive ŷ from y by applying the above expression in an element-wise man-
ner.

When solving (4), θθθ = (D,u1,v1,b1 . . . ,vK ,uK ,bK) and we use

Φ2 (θθθ ,x,y) =
K

∑
k=1

f (D,uk−vk,bk,x,yk). (9)
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Algorithm 1 SGD algorithm for generic US-SVM
Input: Training set S = {(xi,yi)}i=1···M , α,β ∈ R (regularization parameters), λz, λD, tz,0, tD,0
(learning rate parameters), µ (learning rate multiplier for bias), r (elastic-net parameter), and D ∈
Rd×A (initial dictionary), U ∈ RA×K

+ ,V ∈ RA×K
+ (inital sparse code) and b ∈ RK (initial bias), E

(number of epochs), B (number of iterations per block)

t := 0
while t < EM do

for 1 to B do
Draw (x,y) from S randomly and unre-
peatedly
Compute ŷ (Eq.8)
Z = U−V
Update the sparse codes:
U← [U−λz,t(rβJ−D>xŷ>+αD>DZ+
2(1− r)Z)]+
V← [V−λz,t(rβJ+D>xŷ>−αD>DZ−
2(1− r)Z)]+
Update the bias: b← b+µλz,t ŷ
t← t +1

end for

for 1 to B do
Draw (x,y) from S randomly and unre-
peatedly
Compute ŷ (Eq.8)
Z = U−V
Update the dictionary:
D← D−λD,t(−xŷ>Z>+αDZZ>)
Project D to D:
for j = 1 to A do

d j← d j/max(‖d j‖,1)
end for
t← t +1

end for
end while

The gradient required for SGD can be assembled from the partial gradients below, where we
use Φ1 from (6):

∇DΦ2 =−
K

∑
k=1

(
ŷkxz>k +αD(zkz>k )

)
, ∇uk Φ2 = ∇uΦ1|u=uk

, ∇vk Φ2 = ∇vΦ1|v=vk
. (10)

We note that other choices for Φ(θθθ ,Si) are possible for this second problem, and that
using BC-SGD can reduce the complexity of the learning process. A common approach in
dictionary learning, for example, consists of updating a single atom at a time [1].

In Algorithm 1, J = [1]i j is an all-one matrix of size A×K and we summarize an algo-
rithm that solves (4) for the general case of elastic net penalization (US-SVM-E); Note that
a solution for (3) follows by setting the learning rate λD to 0. The same algorithm can be
used to implement the non-negativity of z by forcing V = 000 and not updating it. Hence the
same algorithm addresses all four US-SVM variants (US-SVM, US-SVM-E, US-SVM-N,
US-SVM-NE).

3.5 Benefits of the proposed method

Large-scale image retrieval has been made possible by developments in approximate nearest
neighbor search relying on compact (vector-quantized) representations of the image feature
vectors [18]. These approaches have been applied to enable large-scale search using image
classifiers [7] by likewise representing the feature database compactly while using a standard
dense linear classifier. The approach we present herein is complementary in that it enables
using linear classifiers that are sparse. Letting X = [xi]i represent the feature database, the
resulting test-time operation w>X = (Dz)>X = z>(D>X) can be carried out very efficiently
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by pre-computing X′ , D>X, leaving only the low-complexity sparse-vector/matrix prod-
uct z>X′ for test time. If one further needs to store a bank of these classifiers, a sparse
representation such as z is beneficial in that it has small storage footprint.

Our US-SVM formulation further enjoys reduced learning complexity over `2-SVM in
situations involving large, fixed negative sets [2, 13, 27, 28, 39]. In these cases, x′i , D>xi
for all negative vectors xi can be computed once for all learning runs, and one need only
carry out lower-complexity operations of the form z>x′i during the learning process.

Another interesting property of US-SVM is that, since the atoms of dictionaries learned
from (4) are shared by multiple classes, it is possible to interpret these as attribute classi-
fiers. We have also observed that, for classes exhibiting multi-modal feature distributions,
our method can discover these modalities. We provide empirical evidence of both of these
properties in the results section.

4 Experiments
In this section, we first discuss how we choose the hyperparameters for our model, and then
compare the performance of `1-SVM and `2-SVM on different datasets with that of US-
SVM, US-SVM-N, US-SVM-E, and US-SVM-NE. The performance is evaluated in terms
of mean Average Precision (mAP) [12] and sparsity (number of nonzero coefficients in the
representation). To ensure that insignificant coefficients do not adversely influence sparsity,
for all classifiers, we vary the sparsity level by pruning the lower-energy coefficients.

We present results using two datasets: PASCAL VOC 2007 (PVOC) and ImageNet.
From ImageNet, we derive two datasets: one consists of 200 synsets randomly chosen from
ImageNet (ImageNet-200) and the other consists of 20 synsets (ImageNet-20) randomly cho-
sen but without overlap with ImageNet-200. We represent images using VGG-128 features
[5] and VLAD features [8]. The VLAD features are of very large dimension (8192), and
hence we reduce their dimension to 128 by means of PCA.

Hyperparameter cross-validation. Our proposed model has 8 hyperparameters: α (`2
regularization parameter), β (`1 regularization parameter), λz, λD, tz,0, tD,0 (parametriza-
tion coefficients for learning rates of z and D), r (elastic-net parameter) and A (size of the
dictionary). Two of these hyperparameters (the t•,0s) are set empirically based on training
cost over a small subset of the training samples. By means of cross-validation, we further
found that only three of the remaining hyperparameters (β , λD and λz) are most important
and should be set by cross-validation. Concerning α and the number of atoms A, a good
empirical strategy is to set the number of atoms to a multiple of the feature dimension and α
to a value close to zero (see Table 1 and related discussion).

Evaluation on PASCAL VOC. In Fig. 1 (left), we evaluate our proposed US-SVM
learning method. We learn both D and the zi by solving (4) over the PASCAL VOC dataset,
using VLAD features. The aim of US-SVM is to provide improved performance at low
search complexities (or accordingly, low classifier sparsity values). The experiments illus-
trate that US-SVM indeed offers a performance advantage for lower sparsity values. For
higher sparsity levels, `2-SVM enjoys a performance advantage as is to be expected from
the dense nature of VLAD features. Yet using dense classifiers becomes too expensive when
searching in very large image sets.

Evaluation on ImageNet. In Fig. 1 (right) we evaluate how well dictionaries learned
on an auxiliary training set (ImageNet-200) by means of (4) transfer to new target datasets
(ImageNet-20), where only the sparse representation is learned using (3). This use case
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Figure 1: Classification performance of different types of SVMs versus classifiers sparsity (average
|zk|0). Left: VLAD features, A = 100, PVOC. Right: VGG-128 features, A = 300, D learned on
ImageNet-200, results presented for classifiers zk learned and tested on ImageNet-20.

Figure 2: Examples of visual attributes captured by learned atoms across multiple classes. Top: water;
middle: rectangular shape; bottom: round shape. Each row presents the ten images with highest d>a j

x
score for three different atoms da j , j = 1,2,3. For each row, images with the same border color belong
to the same class.

corresponds to real search scenarios where the dictionary matrix D is learned offline from a
large auxiliary dataset. At search time, only the sparse code z for a never-before-seen class
needs to be learned. The resulting sparse code can be applied efficiently to a large set of
search feature vectors X = [xi]i using z>D>X = z>X′, where X′ , D>X is precomputed
using a transformation D that enables the employment of very sparse z. Note that, indeed,
the US-SVM classifiers in Fig. 1 (right) enjoy nearly constant performance for drastically
low sparsity levels of less than 5 (i.e., lower than 4%), where the performance is close to 20
mAP points better (a +20% difference) than that of `1-SVM or `2-SVM.

Attribute discovery. Fig. 2 shows examples of visual “attributes" (associated to atoms)
that are learned automatically using our proposed method. Each row of images corresponds
to the top-10 ranked images when using the corresponding atom alone as a classifier: Letting
x represent a generic image feature, the images are ranked based on the d>a j

x score for three
different atoms da j , j = 1,2,3 (one per row) chosen for visualization purposes. Note that
the classes corresponding to these top-ranked are very varied, indicating that the atom has
not specialized to a given class. Yet common visual elements are evident for the top-ranked
images of each row, whether geometric (round or rectangular parts) or texture-based (water).

Modality discovery. In Fig. 3 we illustrate how our method can automatically discover
intra-class modalities by ranking images of class ping-pong ball according the the highest-
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Figure 3: Different modalities discovered by learned atoms on the class “ping-pong ball” from Im-
ageNet. Red: close-ups of ping-pong balls; green: casual ping-pong matches indoor; blue: formal
ping-pong matches in a gymnasium. Each groups of five images presents the five images from class
ping-pong ball with highest da j x score for the three atoms da j , j = 1,2,3 with highest |za j | from the
US-SVM representation Dz = [da]a[za]

>
a of class ping-pong ball.

A = 100 A = 200 A = 300

mAP (%) 40.49 42.00 42.86 43.40 43.50 43.63

Runtime (sec/epoch) 2.62 4.63 3.13 6.02 3.69 20.74

Table 1: Runtime performance and mAP for A = 100,200 and 300 when (left column) α = 0 and
when (right column) cross-validating α .

energy atoms in the corresponding US-SVM classifier. Each row presents the five images
from class ping-pong ball with highest d>a j

x score for the three atoms da j , j = 1,2,3 with
highest |za j | from the US-SVM representation Dz = [da]a[za]

>
a of class ping-pong ball. Note

that sub-modalities of the class are evident from the top-ranked images from each atom.
Runtime improvement when α = 0. In Table 1, we evaluate run-time improvements

when comparing US-SVM to the α = 0,β > 0 variant dubbed US-SVM-`1. This special
case enjoys the added advantage of reduced learning complexity and is hence important in
situations such as on-the-fly search [6] where the user needs to wait for classifiers to train.
The table establishes that indeed, setting α = 0 can result in important runtime advantages
without significant sacrifice of searching performance, as is to be expected since the special
case when α = 0,β > 0 amounts to maximization of a margin upper bound (see Section 3.1).

5 Conclusion
In this work, we introduced the Union-of-Supspaces Support Vector Machine (US-SVM),
an approach that embeds supervised dictionary learning into an SVM learning objective.
Contrary to existing approaches in supervised dictionary learning, our learned dictionary
does not encode the data vectors, but rather the classifiers. We introduce several variants
of the proposed algorithm, and apply our method to the task of visual categorization using
standard datasets, establishing experimentally that our approach can provide substantial im-
provements in performance at low representation sparsities. We further show empirically that
the learned dictionaries implicitly perform automatic discovery of attributes that are shared
across classes, as well as automatic discovery of modalities in the data vector distributions.
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