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Dictionaries D ∈ Rd×A (with A > d) for sparse coding are learned in
an unsupervised manner [4] by approximating the training vectors {xi ∈
Rd}M

i=1 with sparse linear combinations of the columns (called atoms) of
D. Letting {zi ∈ RA}i denote the vectors of sparse linear combination
weights, this can be formulated as

argmin
D

M

∑
i=1

min
zi
‖xi−Dzi‖2

2 +β‖zi‖1. (1)

We propose herein a novel method to learn SVM classifiers that picks up
this line of work on dictionary learning by learning SVM classifiers that
are sparse in a dictionary that is learned for the classification task. While
previous works have addressed learning supervised dictionaries for classi-
fication, they have all focused on enforcing the sparsity of representation
of the feature vectors and not of the classifiers, like we do.

Formulation. Given the dictionary D, learning a linear classifier w =
Dz that is D-sparse amounts to learning the sparse vector z. A suitable
formulation for z can be derived by substituting w = Dz into the standard
`2-penalized SVM learning objective and appending an additive sparsity-
enforcing penalty term β‖z‖1. Our proposed dictionary learning problem
follows by summing the resulting expression over K training classes:

argmin
D,{zk}k ,b

K

∑
k=1

M

∑
i=1

max
(
0,1− y(x>i Dzk +b)

)
+

α

2
‖Dzk‖2

2 +β‖zk‖1. (2)

Note that D can further be fixed in latter stages and for never-before-seen
clases where only the classifier’s sparse z are learned. The learned linear
classifiers w = Dz will exist in a union of subspaces, with each subspace
being the span of a small subset of atoms from D. Hence we refer to our
proposed classifier as a Union-of-Subspaces SVM (US-SVM). We further
present two possible modifications of the above formulation. The first
one forces the zk to be non-negative, while the second one substitutes
the `1 penalty term by an elastic net penalty term. The Stochastic Gra-
dient Descent (SGD) solver we propose is valid for (2) and its variants
incorporating one or both of the aforementioned modifications. It uses a
block-coordinate descent approach for reasons of complexity, and adopts
the `1-SVM SGD method described in [1].

Advantages of the proposed method. Forcing the classifier to be
sparse in a learned dictionary exposes a number of interesting benefits.
One benefit concerns the compactness of the representation – classifiers
with compact representations can be stored more efficiently and, impor-
tantly, they incur lower computational cost both at training and testing
time. Another benefit is that the atoms (columns) of the learned dictionary
will inherit semantic properties shared by different classes and hence can
often be interpreted as semantic attributes, thus opening a possible path to
weakly supervised attribute discovery. In a similar manner, atoms of the
learned dictionary will often correspond to modalities of the underlying
feature distribution that can likewise have interesting semantic interpre-
tations. Forcing the classifier to be sparse using a learned dictionary can
also be interpreted as a novel SVM regularization scheme. Unlike other
schemes that constrain the norm of the classifier, our regularization re-
quires that all classifiers be represented in terms of a common dictionary,
in effect enabling the system to leverage the annotations for all classes
when learning any given class.

Experiments. We evaluate our proposed method using both unsu-
pervised features as well as very recent, CNN-derived features, testing
it on well known image classification datasets (PASCAL VOC 2007 [3]
and ImageNet [2]). Our experiments establish that our approach results in
very sparse representations of classifiers that outperform other SVM clas-
sifiers, and with learned dictionaries that carry out automatic attribute and
modality discovery as part of the learning process. Example results on

Figure 1: Examples of visual attributes captured by learned atoms across multiple
classes. Top: water; middle: rectangular shape; bottom: round shape. For each
row, images with the same border color belong to the same class.
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Figure 2: Classification performance versus sparsity (average |zk|0) on a subset
of ImageNet for US-SVMs with and without Non-negativity (N) constraints and
Elastic net (E) penalization, and `1/`2-SVMs.

a subset of ImageNet are presented in Fig. 2 for US-SVM, with/without
non-negativity constraints and elastic net penalization.

In Fig. 2 we present example results on ImageNet that illustrate how
US-SVM enjoys nearly constant performance for drastically low sparsity
levels of < 5 (for feature vectors xi ∈ R128), where the performance is
close to 20 mAP points better (a +20% difference) than that of `1-SVM
or `2-SVM.

Attribute discovery. Fig. 1 shows examples of visual “attributes"
(associated to atoms) that are learned automatically using our proposed
method. Each row of images corresponds to the top ranked images when
using the corresponding atom alone as a classifier. Note that the classes of
these top-ranked images are very varied, indicating that the atom has not
specialized to a given class. Yet common visual elements are evident for
the top-ranked images of each row, whether geometric (round or rectan-
gular parts) or texture-based (water). Although not illustrated, we further
show empirically that some learned atoms further split image classes into
the various modalities of the class.
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