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In this paper we present a method for the appli-
cation of Convolutional Neural Network (CNN)
operators for use in domains which exhibit ir-
regular spatial geometry by use of the spectral
domain of a graph Laplacian, Figure 1. This al-
lows learning of localized features in irregular
domains by defining neighborhood relationships
as edge weights between vertices in graph G. By
formulating the domain as a fixed graph repre-
sentation and projecting the observed data onto
G as a graph signal f we are able to utilize the
convolution theorem via a graph Fourier trans-
form, matrix multiplication with the column-
wise eigenvector matrix U , and elementwise
multiplication with spectral filters k to learn fea-
ture maps (1).

y =U
I

∑
i=1

UT fs,i � ki,o (1)

We introduce novel gradient calculations for the
convolution operator backpropagation step in re-
gards to both f (2) and k (3). These new calcula-
tions are shown to provide higher accuracy and
stability compared to calculations presented by
[2] and [1].
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Figure 1: Graph based Convolutional Neural
Network components.

The gradient calculation in regards to signal
fs,i is given by (2), a spectral convolution of out-
put loss ∇ys,o with current weights of the spec-
tral filters ki,o.

∇ fs,i =U
O

∑
o=1

UT
∇ys,o � ki,o (2)

Gradients for the spectral filters are provided by
(3), which are shown to improve over those of
[2] in Figure 2.

∇ki,o =
N

∑
s=1

UT
∇ys,o �UT fs,i. (3)

We also present the use of Algebraic Multigrid
as a method of graph coarsening, an analogy to
the pooling operator of conventional CNNs, ag-
glomerating nodes from the previous layer into
a singular node in the subsequent layer. As with
standard CNNs this provides both a reduction
in graph complexity and generalization of learnt
features.
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Graph CNN - ∇ki,o =
∑N

s=1 U
T
∇ys,o ⊙ UT fs,i

[2] - ∇ki,o = U
∑N

s=1 ∇ys,o ⊙ fs,i

Figure 2: Gradient calculation errors for interpo-
lation of various numbers of tracked weights.

Although this method is adaptable to numer-
ous domains, we evaluate performance on a reg-
ular 2D pixel grid and an irregular grid with sub-
sampled spatial geometry with the MNIST digit
classification problem projected onto the graph.
By utilizing (2) and (3) we obtain accuracy rates
of 94.23% and 94.96% for the regular and irreg-
ular spatial domains respectively.
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