
SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES 1

Learning Neural Network Architectures
using Backpropagation
Suraj Srinivas
surajsrinivas@grads.cds.iisc.ac.in

R. Venkatesh Babu
venky@cds.iisc.ac.in

Department of Computational
and Data Sciences
Indian Institute of Science
Bangalore, India

Abstract
Deep neural networks with millions of parameters are at the heart of many state of

the art machine learning models today. However, recent works have shown that models
with much smaller number of parameters can also perform just as well. In this work, we
introduce the problem of architecture-learning, i.e; learning the architecture of a neural
network along with weights. We start with a large neural network, and then learn which
neurons to prune. To this end, we introduce a new trainable parameter called the Tri-State
ReLU, which helps in pruning unnecessary neurons. We also propose a smooth regular-
izer which encourages the total number of neurons after elimination to be small. The
resulting objective is differentiable and simple to optimize. We experimentally validate
our method on both small and large networks, and show that it can learn models with
considerably smaller number of parameters without affecting prediction accuracy.

1 Introduction
Everything should be made as simple as possible, but not simpler - Einstein

For large-scale tasks like image classification, the general practice in recent times has been
to train large networks with many millions of parameters (see [12, 19, 24]). Looking at these
models, it is natural to ask - are so many parameters really needed for good performance? In
other words, are these models as simple as they can be? A smaller model has the advantage
of being faster to evaluate and easier to store - both of which are crucial for real-time and
embedded applications. In this work, we consider the problem of automatically building
smaller networks that achieve performance levels similar to larger networks.

Regularizers are often used to encourage learning simpler models. These usually restrict
the magnitude (`2) or the sparsity (`1) of weights. However, to restrict the computational
complexity of neural networks, we need a regularizer which restricts the width and depth of
network. Here, width of a layer refers to the number of neurons in that layer, while depth
simply corresponds to the total number of layers. Generally speaking, the greater the width
and depth, the more are the number of neurons, the more computationally complex the model
is. Naturally, one would want to restrict the total number of neurons as a means of controlling
the computational complexity of the model. However, the number of neurons is an integer,
making it difficult to optimize over. This work aims at making this problem easier to solve.

The overall contributions of the paper are as follows.

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 104.1-104.11

DOI: https://dx.doi.org/10.5244/C.30.104

https://dx.doi.org/10.5244/C.30.104


2 SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES

• We propose novel trainable parameters which are used to restrict the total number of
neurons in a neural network model - thus effectively selecting width and depth (Section
2)

• We perform experimental analysis of our method to analyze the behaviour of our
method. (Section 4)

• We use our method to perform architecture selection and learn models with consider-
ably small number of parameters (Section 4)

2 Complexity as a regularizer
In general, the term ‘architecture’ of a neural network can refer to aspects of a network other
than width and depth (like filter size, stride, etc). However, here we use that word to simply
mean width and depth. Given that we want to reduce the complexity of the model, let us
formally define our notions of complexity and architecture.

Notation. Let Φ = [n1,n2, ...,nm,0,0, ...] be an infinite-dimensional vector whose first m
components are positive integers, while the rest are zeros. This represents an m-layer neural
network architecture with ni neurons for the ith layer. We call Φ as the architecture of a
neural network.

For these vectors, we define an associated norm which corresponds to our notion of
architectural complexity of the neural network. Our notion of complexity is simply the total
number of neurons in the network.

The true measure of computational complexity of a neural network would be the total
number of weights or parameters. However, if we consider a single layer neural network, this
is proportional to the number of neurons in the hidden layer. Even though this equivalence
breaks down for multi-layered neural networks, we nevertheless use the same for want of
simplicity.

Definition. The complexity of a m-layer neural network with architecture Φ is given by

‖Φ‖=
m
∑

i=1
ni.

Our overall objective can hence be stated as the following optimization problem.

θ̂ ,Φ̂ = argmin
θ ,Φ

`(ŷ(θ ,Φ),y)+λ‖Φ‖ (1)

where θ denotes the weights of the neural network, and Φ the architecture. `(ŷ(θ ,Φ),y)
denotes the loss function, which depends on the underlying task to be solved. For example,
squared-error loss functions are generally used for regression problems and cross-entropy
loss for classification. In this objective, there exists the classical trade-off between model
complexity and loss, which is handled by the λ parameter. Note that we learn both the
weights (θ ) as well as the architecture (Φ) in this problem. We term any algorithm which
solves the above problem as an Architecture-Learning (AL) algorithm.

We observe that the task defined above is very difficult to solve, primarily because ‖Φ‖
is an integer. This makes it an integer programming problem. Hence, we cannot use
gradient-based techniques to optimize for this. The main contribution of this work is the
re-formulation of this optimization problem so that Stochastic Gradient Descent (SGD) and
back-propagation may be used.



SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES 3

2.1 A Strategy for a trainable regularizer
We require a strategy to automatically select a neural network’s architecture, i.e; the width
of each layer and depth of the network. One way to select for width of a layer is to introduce
additional learnable parameters which multiply with every neuron’s output, as shown in
Figure 1(a). If these new parameters are restricted to be binary, then those neurons with a
zero-parameter can simply be removed. In the figure, the trainable parameters corresponding
to neurons with values b and d are zero, nullifying their contribution. Thus, the sum of
these binary trainable parameters will be equal to the effective width of the network. For
convolutional layers with n feature map outputs, we have n additional parameters that select
a subset of the n feature maps. A single additional parameter multiplies with an entire feature
map either making it zero or preserving it. After all, filters are analogous to neurons for
convolutional layers.

−0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

x

y

 

 

y = x2

y = x(1−x)

(a) (b)
Figure 1: (a) Our strategy for selecting width and depth. Left: Grey blobs denote neurons, coloured
blobs denote the proposed additional trainable parameters. Right: Purple bars denote weight-matrices.
(b) Graph of the `2 regularizer and the binarizing regularizer in 1-D.

To further reduce the complexity of network, we also strive to reduce the network’s
depth. It is well known that two neural network layers without any non-linearity between
them is equivalent to a single layer, whose parameters are given by the matrix product of the
weight matrices of the original two layers. This is shown on the right of Figure 1(a). We can
therefore consider a trainable non-linearity, which prefers ‘linearity’ over ‘non-linearity’.
Wherever linearity is selected, the corresponding layer can be combined with the next layer.
Hence, the total complexity of the neural network would be the number of parameters in
layers with a non-linearity.

In this work, we combine both these intuitive observations into one single framework.
This is captured in our definition of the tri-state ReLU which follows.

2.1.1 Definition: Tri-state ReLU

We define a new trainable non-linearity which we call the tri-state ReLU (tsReLU) as fol-
lows:

tsReLU(x) =

{
wx, x≥ 0
wdx, otherwise

(2)

This reduces to the usual ReLU for w = 1 and d = 0. For a fixed w = 1 and a trainable d,
this turns into parametric ReLU [9]. For us, both w and d are trainable. However, we restrict
both these parameters to take only binary values. As a result, three possible states exist for
this function. For w = 0, this function is always returns zero. For w = 1 and d = 0 it behaves
similar to ReLU, while for w = d = 1 it reduces to the identity function.



4 SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES

Here, parameter w selects for the width of the layer, while d decides depth. While the
w parameter is different across channels of a layer, the d parameter is tied to the same value
across all channels. If d = 1, we can combine that layer with the next to yield a single layer.
If w = 0 for any channel, we can simply remove that neuron as well as the corresponding
weights in the next layer.

Thus, our objective while using the tri-state ReLU is

Minimize
θ ,wi j ,di:∀i, j

`(ŷ(θ ,w,d),y)

such that wi j,di ∈ {0,1}
∀i, j

(3)

We remind the reader that here i denotes the layer number, while j denotes the jth neuron
in a layer. Note that for λ = 0, it converts the objective in Equation 1 from an integer
programming problem to that of binary programming.

2.1.2 Learning binary parameters

Given the definition of tri-state ReLU (tsReLU) above, we require a method to learn binary
parameters for w and d. To this end, we use a regularizer given by w× (1−w) [17]. This
regularizer encourages binary values for parameters, if they are constrained to lie in [0,1].

Henceforth, we shall refer to this as the binarizing regularizer. Murray and Ng [17]
showed that this regularizer does indeed converge to binary values given a large number of
iterations. For the 1-D case, this function is an downward-facing parabola with minima at
0 and 1, as shown in Figure 1(b). As a result, weights “fall” to 0 or 1 at convergence. In
contrast, the `2 regularizer is an upward facing parabola with a minimum at 0, which causes
it to push weights to be close to zero.

With this intuition, we now state our tsReLU optimization objective.

θ ,w,d = argmin
θ ,wi j ,di:∀i, j

`(ŷ(θ ,w,d),y) + λ1

m

∑
i=1

ni

∑
j=1

wi j(1 − wi j) + λ2

m

∑
i=1

di(1 − di) (4)

Note that λ1 is the regularization constant for the width-limiting term, while λ2 is for
the depth-limiting term. This objective can be solved using the usual back-propagation algo-
rithm. As indicated earlier, this binarizing regularizer works only if w’s and d’s are guaran-
teed to be in [0,1]. To enforce the same, we perform clipping after parameter update.

After optimization, even though the final parameters are expected to be close to binary,
they are still real numbers close to 0 or 1. Let wi j be the parameter obtained during the
optimization. The tsReLU function uses a binarized version of this variable

w′i j =

{
1, wi j ≥ 0.5
0, otherwise

during the feedforward stage. Note that wi j slowly changes during training, while w′i j
only reflects the changes made to wi j. A similar equation holds for d′i .



SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES 5

2.2 Adding model complexity
So far, we have considered the problem of solving Equation 1 with λ = 0. As a result,
the objective function described above does not necessarily select for smaller models. Let

hi =
ni
∑
j=1

wi j correspond to the complexity of a layer. The model complexity term is given by

‖Φ‖=
m

∑
i=1

hi 1(di=0)

This is formulated such that for di = 0, the complexity in a layer is just hihi+1, while
for di = 1 (non-linearity absent), the complexity is 0. Overall, it counts the total number of
weights in the model at convergence.

We now add a regularizer analogous to model complexity (defined above) in our opti-
mization objective in Equation 4 . Let us call the regularizer corresponding to model com-
plexity as Rm(h,d), which is given by

Rm(h,d) = λ3

m

∑
i=1

hi1(di<0.5)−λ4

m

∑
i=1

di (5)

The first term in the above equation limits the complexity of each layer’s width, while
the second term limits the network’s depth by encouraging linearity. Note that the first term
becomes zero when a non-linearity is absent. Also note that the indicator function in the first
term is non-differentiable. As a result, we simply treat that term as a constant with respect
to di.

3 Related Work
There have been many works which look at performing compression of a neural network.
Weight-pruning techniques were popularized by Optimal Brain Damage [14] and Optimal
Brain Surgery [8]. Recently, [21] proposed a neuron pruning technique, which relied on neu-
ronal similarity. Our work, on the other hand, performs neuron pruning based on learning,
rather than hand-crafted rules. Our learning objective can thus be seen as performing prun-
ing and learning together, unlike the work of Han et al. [7], who perform both operations
alternately.

Learning neural network architecture has also been explored to some extent. The Cascade-
correlation [5] proposed a novel learning rule to ‘grow’ the neural network. However, it was
shown for only a single layer network and is hence not clear how to scale to large deep net-
works. Our work is inspired from the recent work of Kulkarni et al. [13] who proposed to
learn the width of neural networks in a way similar to ours. Specifically, they proposed to
learn a diagonal matrix D along with neurons Wx, such that DWx represents that layer’s neu-
rons. However, instead of imposing a binary constraint (like ours), they learn real-weights
and impose an `1-based sparsity-inducing regularizer on D to encourage zeros. By impos-
ing a binary constraint, we are able to directly regularize for the model complexity. Re-
cently, Bayesian Optimization-based algorithms [20] have also been proposed for automat-
ically learning hyper-parameters of neural networks. However, for the purpose of selecting
architecture, these typically require training multiple models with different architectures -
while our method selects the architecture in a single run. A large number of evolutionary
algorithms (see [22, 23, 26]) also exist for the task of finding Neural Network architectures.



6 SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES

However, these are typically evaluated on small scale problems, often not relating to pattern
recognition tasks.

Many methods have been proposed to train models that are deep, yet have a lower pa-
rameterisation than conventional networks. Collins and Kohli [2] propose a sparsity inducing
regulariser for backpropogation which promotes many weights to have zero magnitude. They
achieve reduction in memory consumption when compared to traditionally trained models.
In contrast, our method promotes neurons to have a zero-magnitude. As a result, our overall
objective function is much simpler to solve. Denil et al. [3] demonstrate that most of the
parameters of a model can be predicted given only a few parameters. At training time, they
learn only a few parameters and predict the rest. Yang et al. [25] propose an Adaptive Fast-
food transform, which is an efficient re-parametrization of fully-connected layer weights.
This results in a reduction of complexity for weight storage and computation.

Some recent works have also focussed on using approximations of weight matrices to
perform compression. Jaderberg et al. [10] and Denton et al. [4] use SVD-based low
rank approximations of the weight matrix. Gong et al. [6] use a clustering-based product
quantization approach to build an indexing scheme that reduces the space occupied by the
matrix on disk.

4 Experiments

In this section, we perform experiments to analyse the behaviour of our method. In the first
set of experiments, we evaluate performance on the MNIST dataset. Later, we look at a
case study on ILSVRC 2012 dataset. Our experiments are performed using the Theano Deep
Learning Framework [1].

4.1 Compression performance

We evaluate our method on the MNIST dataset, using a LeNet-like [15] architecture. The
network consists of two 5× 5 convolutional layers with 20 and 50 filters, and two fully
connected layers with 500 and 10 (output layer) neurons. We use this architecture as a
starting point to learn smaller architectures. First, we learn using our additional parameters
and regularizers. Second, we remove neurons with zero gate values and collapse depth for
linearities wherever is it advantageous. For example, it might not be advantageous to remove
depth in a bottleneck layer (like in auto-encoders). Thus, the second part of the process is
human-guided.

Starting from a baseline architecture, we learn smaller architectures with variations of
our method. Note that there is max-pooling applied after each of the convolutional layers,
which rules out depth selection for those two layers. We compare the proposed method
against baselines of directly training a neural network (NN) on the final architecture, and
our method of learning a fixed final width (FFW) for various layers. In Table 1, the Layers
Learnt column has binary elements (w,d) which denotes whether width(w) or depth(d) are
learnt for each layer in the baseline network. As an example, the second row shows a method
where only the width is learnt in the first two layers, and depth also learnt in the third layer.
This table shows that all considered models - large and small - perform more or less equally
well in terms of accuracy. This empirically shows that the small models discovered by AL
preserve accuracy.



SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES 7

Method λ3 Layers Learnt Architecture AL (%) NN (%)
Baseline N/A (0,x)-(0,x)-(0,0) 20-50-500-10 N/A 99.3

AL1 0.4λ1 (1,x)-(1,x)-(1,1) 16-26-10 99.07 99.08
AL2 0.4λ1 (1,x)-(1,x)-(1,0) 20-50-20-10 99.07 99.14
AL3 0.2λ1 (1,x)-(1,x)-(1,1) 16-40-10 99.22 99.25
AL4 0.2λ1 (1,x)-(1,x)-(1,0) 20-50-70-10 99.19 99.21

Table 1: Architecture learning performance of our method on a LeNet-like baseline. The Layers
Learnt column has binary elements (w,d) which denotes whether width(w) or depth(d) are learnt for
each layer in the baseline network. AL = Architecture Learning, NN = Neural Network trained w/o
AL

We also compare the compression performance of our AL method against SVD-based
compression of the weight matrix in Table 2. Here we only compress layer 3 (which has
800×500 weights) using SVD. The results show that learning a smaller network is beneficial
over learning a large network and then performing SVD-based compression.

Method Params Accuracy (%)
Baseline 431K 99.3

SVD (rank-10) 43.6K 98.47
AL2 40.9K 99.07

SVD (rank-40) 83.1K 99.06
AL4 82.3K 99.19

Table 2: Comparison of compression performance of proposed method against SVD-based weight-
matrix compression.

4.2 Analysis

We now perform a few more experiments to further analyse the behaviour of our method. In
all cases, we train ‘AL2’-like models, and consider the third layer for evaluation. We start
learning with the baseline architecture considered above.

First, we look at the effects of using different hyper-parameters . From Figure 2(a) , we
observe that (i) increasing λ3 encourages the method to prune more, and (ii) decreasing λ1
encourages the method to learn the architecture for an extended amount of time. In both
cases, we see that the architecture stays more-or-less constant after a large enough number
of iterations.

Second, we look at the learnt architectures for different amounts of data complexity.
Intuitively, simpler data should lead to smaller architectures. A simple way to obtain data
of differing complexity is to simply vary the number of classes in a multi-class problem like
MNIST. We hence vary the number of classes from 2−10, and run our method for each case
without changing any hyper-parameters. As seen in Figure 2(b) , we see an almost monotonic
increase in both architectural complexity and error rate, which confirms our hypothesis.

Third, we look at the depth-selection capabilities of our method. We used models with
various initial depths and observed the depths of the resultant models. We used an initial
architecture of 20 - 50 - (75 × n) - 10, where layers with width 75 are repeated to obtain a
network of desired depth. We see that for small changes in the initial depth, the final learnt
depth stays more or less constant. 1

1For theoretical analysis of our method, please see the Supplementary material.



8 SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES

Initial Final Learnt Architecture Error (%)
Depth Depth

6 5 18-31-32-24-10 1.02
8 6 17-37-39-29-21-10 0.99

10 6 17-34-32-21-21-10 0.97
12 6 18-34-30-21-17-10 1.04
15 8 16-37-35-25-20-22-10 0.93

Table 3: Performance of the proposed method on networks of increasing depth.

0 5 10 15 20 25 30

Number of iterations (× 1000)

0

50

100

150

200

250

N
o
. 
o
f 
n
e
u
ro

n
s

AL (λ
3
 = 0.1λ

1
)

AL (λ
3
 = 0.5λ

1
)

AL (λ‘
1
 = 0.2λ

1
)

2 3 4 5 6 7 8 9 10

Number of classes

2

4

6

8

10

12

14

16

N
o.

 o
f n

eu
ro

ns

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr

or
 r

at
e 

(%
)

No. of neurons
Error rate (%)

(a) (b)
Figure 2: (a) Plot of the architecture learnt against the number of iterations. We see that λ1 affects
convergence rate while λ3 affects amount of pruning.
(b) Plot of the no. of neurons learnt for MNIST with various number of classes. We see that both the
neuron count and the error rate increase with increase in number of classes.

4.3 Architecture Selection
In recent times, Bayesian Optimization (BO) has emerged as a compelling option for hyper-
parameter optimization. In these set of experiments, we compare the architecture-selection
capabilities of our method against BO. In particular, we use the Spearmint-lite software
package [20] with default parameters for our experiments.

We use BO to first determine the width of the last FC layer (a single scalar), and later,
the width of all three layers (3 scalars). For comparison, we use the same objective function
for both BO and Architecture-Learning. This means that we use λ3 = 10−5 for AL, while
we externally compute the cost after every training run for BO. Figure 3 shows that BO
typically needs multiple runs to discover networks which perform close to AL. Performing
such multiple runs is often prohibitive for large networks. Even for a small network like
ours, training took ∼30 minutes on a TitanX GPU for 300 epochs. Training with AL does
not change the training time, whereas using BO we spent ∼10 hours for completing 20 runs.
Further, AL directly optimizes the cost function as opposed to BO, which performs a black-
box optimization.

Given that we perform architecture selection, what hyper-parameters does AL need? We
notice that we only need to decide four quantities - λ1−4. If our objective is to only decide
widths, we need to decide only two quantities - λ1 and λ3. Thus, for a n-layer neural network,
we are able to decide n (or 2n−1) numbers (widths and depths) based on only two (or four)
global hyper-parameters. In the Appendix, we shall look at heuristics for setting these hyper-
parameters.

4.4 Case study: AlexNet
For the experiments that follow, we use an AlexNet-like [12] model, called CaffeNet, pro-
vided with the Caffe Deep Learning framework. It is very similar to AlexNet, except that the
order of max-pooling and normalization have been interchanged. We use the ILSVRC 2012
[18] validation set to compute accuracies in the Table 4. Unlike the experiments performed



SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES 9

0 2 4 6 8 10 12 14 16 18 20
Number of BO iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
os
t
(ℓ

+
λ
‖Φ

‖)

Bayesian Optimization - Layer 3
Architecture Learning - Layer 3

0 2 4 6 8 10 12 14 16 18 20
Number of BO iterations

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
os
t
(ℓ

+
λ
‖Φ

‖)

Bayesian Optimization - All
Architecture Learning - All

(a) (b)
Figure 3: (a) Comparison against Bayesian Optimization for the case of learning the width of only
third layer. (b) Similar comparison for learning the widths of all three layers. (λ = 10−5 in both cases)

previously, we start with a pre-trained model and then perform architecture learning (AL) on
the learnt weights. We see that our method performs almost as well as the state of the art
compression methods. This means that one can simply use a smaller neural network instead
of using weight re-parameterization techniques (FastFood, SVD) on a large network.

Further, many compression methods are formulated keeping only fully-connected layers
in mind. For tasks like Semantic Segmentation, networks with only convolutional layers are
used [16]. Our results show that the proposed method can successfully prune both fully con-
nected neurons and convolutional filters. Further, ours (along with SVD) is among the few
compression methods that can utilize dense matrix computations, whereas all other methods
require specialized kernels for sparse matrix computations [7] or custom implementations
for diagonal matrix multiplication [25], etc.

Method Params Accuracy (%) Compression (% )
Reference Model (CaffeNet) 60.9M 57.41 0

Neuron Pruning ([21]) 39.6M 55.60 35
SVD-quarter-F ([25]) 25.6M 56.19 58

Adaptive FastFood 16 ([25]) 18.7M 57.10 69
AL-conv-fc 19.6M 55.90 68

AL-fc 19.8M 54.30 68
AL-conv 47.8M 55.87 22

Table 4: Compression performance on CaffeNet.

Method Layers Learnt Architecture
Baseline N/A 96 256 384 384 256 4096 4096 1000

AL-fc fc[6,7] 96 256 384 384 256 1536 1317 1000
AL-conv conv[1,2,3,4,5] 80 127 264 274 183 4096 4096 1000

AL-conv-fc conv[5] - fc[6,7] 96 256 384 384 237 1761 1661 1000
Table 5: Architectures learnt by our method whose performance is given in Table 4.

5 Conclusions
We have presented a method to learn a neural network’s architecture along with weights.
Rather than directly selecting width and depth of networks, we introduced a small number of
real-valued hyper-parameters which selected width and depth for us. We also saw that we get
smaller architectures for MNIST and ImageNet datasets that perform on par with the large
architectures. Our method is very simple and straightforward, and can be suitably applied
to any neural network. This can also be used as a tool to further explore the dependence of
architecture on the optimization and convergence of neural networks.



10 SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES

References
[1] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-

canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.
Theano: a cpu and gpu math expression compiler. In Proceedings of the Python for
scientific computing conference (SciPy), volume 4, page 3. Austin, TX, 2010.

[2] Maxwell D. Collins and Pushmeet Kohli. Memory bounded deep convolutional net-
works. CoRR, abs/1412.1442, 2014. URL http://arxiv.org/abs/1412.
1442.

[3] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting param-
eters in deep learning. In Advances in Neural Information Processing Systems, pages
2148–2156, 2013.

[4] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. In Ad-
vances in Neural Information Processing Systems, pages 1269–1277, 2014.

[5] Scott E Fahlman and Christian Lebiere. The cascade-correlation learning architecture.
1989.

[6] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convo-
lutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[7] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and
connections for efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

[8] Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning:
Optimal brain surgeon. Advances in Neural Information Processing Systems, pages
164–164, 1993.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. arXiv preprint
arXiv:1502.01852, 2015.

[10] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. In Proceedings of the British Machine
Vision Conference. BMVA Press, 2014.

[11] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 1097–1105, 2012.

[13] Praveen Kulkarni, Joaquin Zepeda, Frederic Jurie, Patrick PÃl’rez, and Louis Cheval-
lier. Learning the structure of deep architectures using l1 regularization. In Mark
W. Jones Xianghua Xie and Gary K. L. Tam, editors, Proceedings of the British Ma-
chine Vision Conference (BMVC), pages 23.1–23.11. BMVA Press, September 2015.



SRINIVAS AND BABU: LEARNING NEURAL ARCHITECTURES 11

ISBN 1-901725-53-7. doi: 10.5244/C.29.23. URL https://dx.doi.org/10.
5244/C.29.23.

[14] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel.
Optimal brain damage. In Advances in Neural Information Processing Systems, vol-
ume 2, pages 598–605, 1989.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3431–3440, 2015.

[17] Walter Murray and Kien-Ming Ng. An algorithm for nonlinear optimization problems
with binary variables. Computational Optimization and Applications, 47(2):257–288,
2010.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 2015. doi: 10.1007/s11263-015-0816-y.

[19] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[20] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems,
pages 2951–2959, 2012.

[21] Suraj Srinivas and R. Venkatesh Babu. Data-free parameter pruning for deep neural
networks. In Mark W. Jones Xianghua Xie and Gary K. L. Tam, editors, Proceedings
of the British Machine Vision Conference (BMVC), pages 31.1–31.12. BMVA Press,
September 2015. ISBN 1-901725-53-7. doi: 10.5244/C.29.31. URL https://dx.
doi.org/10.5244/C.29.31.

[22] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary computation, 10(2):99–127, 2002.

[23] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based en-
coding for evolving large-scale neural networks. Artificial life, 15(2):185–212, 2009.

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2015.

[25] Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song,
and Ziyu Wang. Deep fried convnets. arXiv preprint arXiv:1412.7149, 2014.

[26] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, 1999.


