
Learning Neural Network Architectures using Backpropagation

Suraj Srinivas
surajsrinivas@grads.cds.iisc.ac.in

R. Venkatesh Babu
venky@cds.iisc.ac.in

Department of Computational and Data Sciences
Indian Institute of Science
Bangalore, India

Deep neural networks with millions of parameters are at the heart of many
state of the art machine learning models today. However, recent works
have shown that models with much smaller number of parameters can
also perform just as well. In this work, we introduce the problem of
architecture-learning, i.e; learning the architecture of a neural network
along with weights. We start with a large neural network, and then learn
which neurons to prune. We also propose a smooth regularizer which en-
courages the total number of neurons after elimination to be small. The
resulting objective is differentiable and simple to optimize. We experi-
mentally validate our method on both small and large networks, and show
that it can learn models with considerably smaller number of parameters
without affecting prediction accuracy.

Architecture-Learning The computational complexity of a neural net-
work can be considered to be equal to the total number of neurons in the
network. As a result, one may use the following objective.

θ̂ ,Φ̂ = argmin
θ ,Φ

`(ŷ(θ ,Φ),y)+λ‖Φ‖ (1)

Here, θ denotes the weights of the neural network, Φ the architecture, and
` denotes the loss function. The λ parameter trades-off between a good fit
and a low complexity model. Here, ‖Φ‖ denotes the model complexity,
which is simply the total number of neurons in our case. We term any
algorithm which solves the above problem as an Architecture-Learning
(AL) algorithm.

Selecting width The strategy we follow to solve the Architecture Learn-
ing problem is outlined in Figure 1. To prune neurons in a layer, we multi-
ply auxiliary gate variables to each neuron. These are either ’0’ or ’1’. As
a result, neurons with corresponding gate variables with ’0’ values can be
pruned away. If we learn these gates along with weights, we effectively
learn the width of neural network layers.

Figure 1: Our strategy for selecting width and depth. Left: Grey blobs
denote neurons, coloured blobs denote the proposed auxiliary gate pa-
rameters. Right: Purple bars denote weight-matrices.

Selecting depth To reduce the depth of the network, we attempt to re-
place non-linearities with linear functions wherever possible. As a result,
whenever linearities are present, two layers can be merged, as shown in
Figure 1.

Tri-State ReLU The two disparate observations mentioned above
are combined into a single non-linearity called the Tri-State ReLU
(TSReLU), which is defined as follows.

tsReLU(x) =

{
wx, x≥ 0
wdx, otherwise

(2)

The various modes of behaviour of this function for different sets of values
of w and d is given in Table 1. As indicated, the proposed function can
behave either can ReLU, a zero function or an identity function.

w d Behaviour
1 0 ReLU
1 trainable Parameteric-ReLU [1]
0 any value Returns 0 always
1 1 Identity function

trainable (0 or 1) trainable (0 or 1) Tri-State ReLU

Table 1: Various modes of behviour for different values of w,d.

Learning Binary Parameters To enable learning binary parameters in-
stead of real valued ones, we use a thresholding operator on the gates. As
a result, gate values are effectively always ’0’ or ’1’.

w′i j =

{
1, wi j ≥ 0.5
0, otherwise

To enable learning binary variables toward the end of the optimization, we
use the following regularizer given by y= x×(1−x). This regularizer en-
courages values to be close to ’0’ or ’1’, in constrast to the `2 regularizer,
which encourages near-zero values.

Results We evaluate our method on both MNIST and AlexNet. For ana-
lytical experiments on MNIST, please refer to the paper. For CaffeNet, the
proposed method performs compression close to state-of-the-art methods,
as shown in Table 2. In addition, it also selects low complexity architec-
tures, as shown in Table 3.

Method Params Accuracy (%)
Reference Model (CaffeNet) 60.9M 57.41

Neuron Pruning 39.6M 55.60
SVD-quarter-F [2] 25.6M 56.19

Adaptive FastFood 16 [2] 18.7M 57.10
AL-conv-fc 19.6M 55.90

AL-fc 19.8M 54.30
AL-conv 47.8M 55.87

Table 2: Compression performance on CaffeNet.

Method Architecture
Baseline 96 256 384 384 256 4096 4096 1000

AL-fc 96 256 384 384 256 1536 1317 1000
AL-conv 80 127 264 274 183 4096 4096 1000

AL-conv-fc 96 256 384 384 237 1761 1661 1000

Table 3: Architectures learnt by our method.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on im-
agenet classification. arXiv preprint arXiv:1502.01852, 2015.

[2] Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas,
Alex Smola, Le Song, and Ziyu Wang. Deep fried convnets. arXiv
preprint arXiv:1412.7149, 2014.


