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Abstract

Graph based dimensionality reduction techniques have been successfully applied to
clustering and classification tasks. The fundamental basis of these algorithms is the con-
structed graph which dominates their performance. Usually, the graph is defined by the
input affinity matrix. However, the affinity matrix is sub-optimal for dimension reduc-
tion as there is much noise in the data. To address this issue, we propose the projective
unsupervised flexible embedding with optimal graph (PUFE-OG) model. We build an
optimal graph by adjusting the affinity matrix. To tackle the out-of-sample problem, we
employ a linear regression term to learn a projection matrix. The optimal graph and pro-
jection matrix are jointly learned by integrating the manifold regularizer and regression
residual into a unified model. An efficient algorithm is derived to solve the challenging
model. The experimental results on several public benchmark datasets demonstrate that
the presented PUFE-OG outperforms other state-of-the-art methods.

1 Introduction
With the popularity of social networks, numerous data are generated everyday, such as im-
ages, videos, texts, etc. But usually these rich resources are not well organized and bring
us big challenges to retrieve them. To address this issue, the most straightforward solution
is to assign semantic labels to these data. However, the data we deal with (e.g., images)
are always represented by high-dimensional vectors. To better organize and represent the
data, many feature selection [10] and probabilistic generative models with feature selec-
tion/missing data [2, 8], dimensionality reduction techniques, and clustering algorithms were
proposed and benefited many related applications, such as image annotation [7], multi-view
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clustering [29], human action recognition [32], human face aging [25], human headpose
estimation [33], attribute detection [24, 26] and video annotation [14].

Many dimensionality reduction algorithms seek for an optimal projection matrix to map
the data. These algorithms are always linked to clustering and classification algorithms and
they work as an intermediate step. For instance, many works perform K-Means clustering
after doing Principle Component Analysis (PCA), and spectral clustering (SC) uses Lapla-
cian eigenmap to project the data which is followed by a K-Means clustering. Recently, the
denoising auto-encoder [23] has been employed for dimensionality reduction before learning
the classifiers. Auto-encoder is very similar to PCA when it only has one linear hidden layer.
One main reason to do dimensionality reduction is that the low-dimensional embeddings can
better represent the data and accelerate the clustering or classification process.

When the labels are available, the most popular dimensionality reduction algorithm is
linear discriminant analysis (LDA). It has excellent performance as LDA utilizes discrim-
inant information to learn the subspace. In addition, simultaneously performing clustering
and subspace learning can yield even better clustering result. Ye et al. [35] proposed an ef-
fective discriminating K-Means (DisKmeans) algorithm by integrating LDA and K-Means.
Yang et al. [34] proposed a local discriminant model and global integration (LDMGI) model
by integrating manifold subspace learning and clustering into a unified framework. However,
labeled data are often very costly to obtain.

When the labels are unavailable, unsupervised dimensionality reduction methods become
the only choice. For example, PCA is widely used because of its simplicity and efficiency.
The unsupervised graph based dimensionality reduction methods (e.g., Neighbor Preserv-
ing Embedding [5], Locality Preserving Projections [17]) usually outperform PCA. This is
because these methods take advantage of manifold information. Many graph based dimen-
sionality reduction methods have been explored, such as locally linear embedding (LLE)
[19], Laplacian eigenmap (LE) [1], and ISOMAP [22]. However, these methods suffer from
out-of-sample problem. They can not map the new data points that are not included in the
training set. To tackle this problem, many works [15] integrated the manifold regularizer
with the ridge regression loss into the subspace learning framework. Similar to other man-
ifold learning algorithms, their performance is also controlled by the graph constructed by
the fixed affinity matrix, which might lead to a sub-optimal result [16]. To address this issue,
we propose a projective unsupervised flexible embedding with optimal graph (PUFE-OG)
framework. Instead of utilizing the fixed affinity matrix to preserve the manifold structure,
we construct an optimal graph by adapting the affinity matrix for subspace learning. It is
worthwhile to highlight the following contributions of our work: (1) The proposed frame-
work exploits an unsupervised flexible embedding for high-dimensional data. The frame-
work automatically adjusts the graph to an optimal graph based on the local manifold struc-
ture; (2) The optimal graph seamlessly integrates manifold learning with subspace learning
into a unified framework. Besides, our framework has closed form solution when update its
nested variables iteratively.

2 Related Work
Dimensionality Reduction Techniques: To better organize and represent data, various su-
pervised and unsupervised dimensionality reduction methods are proposed. As a popular
unsupervised dimensionality reduction method, PCA considers variance as the most impor-
tant metric and aims to minimize the data reconstruction error by minimizing the variance.
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However, PCA can not guarantee that the learned subspace has discriminant power and it
may not improve the clustering result. Different from PCA, spectral clustering [6] is a graph
based clustering method. SC utilizes LE for dimensionality reduction based on the affinity
matrix. SC is more robust compared with PCA as LE preserves the local manifold structure
of the data points. Thus, the data are tailored to low-dimensional space and it accelerates
K-Means clustering. To further improve the performance of SC, many works focused on
learning a better graph. Liu et al. [11] proposed to compress the original large scale graph
into a sparse bipartite graph. Shao et al. [20] adopted deep networks in SC. But SC can not
cluster the data which are not included in the training set as LE can not map new data to the
low-dimensional space. Thus, SC suffers from the out-of-sample problem.

In the supervised settings, Fisher LDA is widely used for subspace learning. LDA [12]
minimizes the within-cluster scatter matrix while maximizes the between-cluster matrix.
Then the cluster centers will be as far as possible while the within-cluster data will be as
close as possible. Thus, the learned subspace has greater discriminantive power compared
with PCA. Dictionary learning can also be employed as a clustering method. Ramirez et
al. [18] proposed training a dictionary for each cluster. A cross-incoherence promoting term
was integrated into the dictionary learning framework. This term encourages the dictionaries
to be as independent as possible, which can lead to greater discriminative power. But the
performance of these methods highly relies on the sufficiency of the labeled training data
which is very time-consuming to obtain.
Manifold Learning: When labels are unavailable, graph based dimensionality reduction
methods can usually provide a better low-dimensional representation and outperform PCA
by utilizing the local manifold structure. Given a dataset XXX=[xxx1,xxx2, ...,xxxn], where n is the
number of samples and xxxi∈Rd ,∀i, manifold information is preserved in the undirected graph
GGG={XXX ,AAA} with data matrix XXX and affinity matrix AAA∈Rn×n. The (i, j)th element Ai, j in AAA
denotes the connectivity between sample xxxi and xxx j. Ai, j can be viewed as the weight of the
edge in the graph. Let us denote the low-dimensional representations of xxxi as fff i ∈ R1×c,
where c is the lower dimension and fff i is a row vector. The goal of manifold learning is to
construct another graph ĜGG={FFF , ÂAA}, where FFF∈Rn×c is the low-dimensional representation of
XXX . Ideally, we should have ÂAA=AAA, which means the connectivity between sample fff i and fff j
should be the same as the connectivity between sample xxxi and xxx j. Gaussian kernel is widely
used to calculate the affinity matrix. AAA is defined as follows:

Ai, j=

{
exp(− ‖xxxi−xxx j‖2

2σ2 ), if xxxi,xxx j are k nearest neighbors.
0, otherwise.

σ controls the weight of the edge. Most manifold learning methods (e.g., LE [1]) represent
the manifold structure with this graph, and require the low-dimensional representations to
preserve the same manifold structure by employing a manifold regularizer as follows:

min
FFF ,FFFT DDDFFF=III

FFFT LLLAAAFFF (1)

Eq. (1) is the objective function of LE, DDD is a diagonal matrix with the element Di,i = ∑ j Ai, j.
The graph Laplacian matrix LLLAAA=DDD−AAA.

To better understand the intuition why this term can preserve the manifold structure, we
reformulate Eq. (1) as Eq. (2) (AAA is symmetric).

Tr(FFFT LLLAFFF) =
1
2

n

∑
i, j=1
‖ fff i− fff j‖2

2Ai, j (2)
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where AAA can be viewed as a similarity matrix which measures the similarity between every
two data points. A larger Ai, j implies a more similar pair of samples. The closer the two
samples are, the larger Ai, j will become. Correspondingly, ‖ fff i− fff j‖2

2 will become smaller to
keep the balance.

To deal with the out-of-sample problem and preserve the manifold smoothness, [21]
proposed a LapRLS/L method, which exploited ridge regression to learn the subspace and a
manifold regularizer term to make use of the local geometry information. Let WWW∈Rd×c be
the projection matrix and bbb∈Rc be the bias term. The ridge regression function is defined as

1
n
‖XXXTWWW+111bbbT−YYY‖2

F + γ‖WWW‖2
F (3)

where 111∈Rn, and with all its entries being 1; YYY is a binary class assignment matrix.
YYY=[yyy1,yyy2, ...,yyyn]∈Rn×c, where yyyi∈{0,1}c×1 is the class indicator vector for xxxi. The j-th
element of yyyi is 1 if xxxi belongs to the j-th class, and 0 otherwise. The second term γ‖WWW‖2

F
is a regularizer to prevent the entries in the projection matrix WWW becoming too large. The
manifold regularizer is

λITr(WWW T XXXLLLAAAXXXTWWW ) (4)

where XXXTWWW is similar to FFF in Eq. (1). After combining Eq. (3) and Eq. (4), the projec-
tion matrix and manifold structure can be jointly learned. Then the low-dimensional repre-
sentation of new data can be obtained using the linear projection function h(xxx)=xxxTWWW+bbbT .
However, this model still requires labeled training data. Nie et al. [15] further extended the
LapRLS/L to deal with the unlabeled data. The performance of these graph based methods
which integrate manifold regularizer is dominated by the graph.

Thus, learning an effective graph is very essential. However, the graph is always fixed
by the affinity matrix AAA. The affinity matrix is a hard constraint, and the learned low-
dimensional representations are restricted to have the same neighbourhood relationship
(ÂAA=AAA) without any violation. But the neighbourhood relationship may be inaccurate as there
is much noise in the data. To address this issue, we propose constructing an optimal graph
by adjusting the neighbourhood relationships for projective unsupervised flexible manifold
embedding which can learn the projection matrix and the optimal graph simultaneously.

3 Projective Unsupervised Flexible Embedding
Framework (PUFE)

To take advantage of manifold information and solve the out-of-sample problem, a unified
PUFE framework is proposed by integrating the manifold regularizer with the ridge regres-
sion terms. The PUFE is as follows:

min
FFF∈Rn×c,FFFT FFF=III
WWW∈Rd×c,bbb∈Rc

Tr(FFFT LLLAFFF)

+µ‖XXXTWWW+111bbbT−FFF‖2
F+γ‖WWW‖2

F
(5)

The functionality of each term is described as follows:
• The first term, Tr(FFFT LLLAFFF), is a manifold regularizer as in Eq. (1), which is in charge of
maintaining the manifold smoothness of the data.

• The second term denotes the ridge regression error. This linear regression model learns
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a projection matrix WWW to project samples to a low-dimensional space. Usually, the dimen-
sionality reduction methods, such as PCA, LDA, use a linear function to project data matrix
XXX : FFF=XXXTWWW , and FFF lies in the space spanned by XXX . But the second term relaxes the rigid
form FFF=XXXTWWW to FFF≈XXXTWWW+111bbbT by minimizing ‖XXXTWWW+111bbbT−FFF‖2

F which is more flexible.
Moreover, this term allows its interaction with manifold regularizer through the variable FFF .

• The third term is a regularizer which is always combined with the ridge regression term.
Its function is to prevent overfitting. The weights, µ , γ balance the importance of each term.
Optimal Graph Construction: As a graph based method, PUFE tackles the out-of-sample
problem, and the affinity matrix AAA has a significant influence on its performance. The affin-
ity matrix AAA can be viewed as a probability matrix. If xxxi and xxx j are similar to each other, a
large value will be assigned to Ai, j and it represents that xxxi has a higher possibility to be the
neighbor of xxx j.

In Eq. (5), graph AAA is a hard constraint, and FFF is forced to embed into the fixed graph AAA
by the penalty term Tr(FFFTTT LLLAAAFFF) in the loss function. However, AAA is not an optimal graph
for dimension reduction, and it may result in a sub-optimal low-dimensional representation.
In this paper, we aim to construct an optimal graph SSS (Si, j ≥ 0) based on the affinity matrix
AAA. Similar to AAA, the entry Si, j in SSS represents the probability that xxx j being the neighbor of
xxxi. Thus, we have ∑ j Si, j=1, which can be formulated as SSS111=111. SSS works as a soft constraint
for FFF . The loss ‖SSS−AAA‖2

F can prevent SSS from deviating too far from AAA. At the same time,
SSS allows the neighborhood probability to be adjusted for dimension reduction. Then FFF is
embedded into the optimal graph SSS.

Let LLLSSS denote the graph Laplacian matrix, we propose the following objective function
and the optimal graph for dimension reduction can be derived by solving the following func-
tion:

min
FFF∈Rn×c,FFFT FFF=III

SSS∈Rn×n,SSS111=111,SSS≥000

‖SSS−AAA‖2
F+λTr(FFFT LLLSFFF)

(6)

The graph Laplacian matrix LLLSSS∈Rn×n is denoted as LLLSSS=DDD− SSS+SSST

2 , where DDD is a diagonal
matrix with diagonal elements Di,i=∑ j(Si, j +S j,i)/2,∀i. Till now, we have constructed the
optimal graph based on the similarity matrix. One very important advantage of this model is
that the neighborhood probability can be tuned.
Projective Unsupervised Flexible Embedding with Optimal Graph (PUFE-OG): By re-
placing the affinity matrix AAA with an optimal neighborhood probability matrix SSS. We can
learn the optimal graph and projection matrix jointly. The following model is obtained after
combining the optimal graph and unsupervised flexing embedding:

min
FFF ,WWW ,bbb,SSS

(
‖SSS−AAA‖2

F+λTr(FFFT LLLSFFF)

+µ‖XXXTWWW+111bbbT−FFF‖2
F+γ‖WWW‖2

F

)

subject to FFFT FFF = III,FFF∈Rn×c

WWW∈Rd×c,bbb∈Rc

SSS111=111,SSS≥000,SSS∈Rn×n

(7)

The functionality of each term is described as follows:
• The first term, ‖SSS−AAA‖2

F , is aimed at constructing an optimal graph SSS∈Rn×n. The Frobenius
norm measures the Euclidean distance between SSS and AAA. This term allows the graph SSS to
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adjust itself for the optimal graph construction while prevents it deviating too far away from
the similarity matrix AAA.
• The second term, λTr(FFFT LLLSFFF), is in charge of maintaining the manifold smoothness of
the data. Different from Eq. (5) whose Laplacian matrix LLLAAA is derived from the fixed affinity
matrix AAA, the Laplacian matrix LLLSSS in this term is based on a soft graph SSS.
• The third term denotes the ridge regression residual. The forth term is a regularizer and
its function is to prevent overfitting. The weights, λ , µ , γ represent the importance of each
term.
Optimization of PUFE-OG: We solve the model in Eq. (7) by optimizing the variables
alternatively which mainly consists of two parts.

Initialization: After setting XXX=[xxx1,xxx2, ...,xxxn] and other parameters, AAA is set to affinity matrix
AAA0. SSS0 is initialized according to Eq. (14) with dddi set to 000.

(1) Fix SSS, update WWW ,bbb,FFF: When SSS is fixed, the original optimization model in Eq. (7) can be
put in the following form,

min
FFFT FFF=III

WWW ,bbb,FFF∈Rn×c

(
λTr(FFFT LLLSFFF)

+µ‖XXXTWWW+111bbbT−FFF‖2
F+γ‖WWW‖2

F

) (8)

Eq. (8) is convex with respect to WWW ,bbb,FFF . The proof is available in [15]. By setting the
derivative with respect to WWW and bbb to 000, we have

bbb =
1
n
(FFFT 111−WWW T XXX111)

WWW = (XXXHHHnXXXT+
γ
µ

III)−1XXXHHHnFFF = QQQFFF
(9)

where QQQ = (XXXHHHnXXXT+ γ
µ III)−1XXXHHHn.

Let XXXn = XXXHHHn. The solution for FFF is

FFF∗=arg min
FFF ,FFFT FFF=III

TrFFFT (λLLLSSS +µHHHn−µNNN)FFF (10)

where
NNN=XXXT

n (XXXnXXXT
n +

γ
µ

III)−1XXXn=XXXT
n XXXn(XXXT

n XXXn+
γ
µ

III)−1

A generalized eigenvalue decomposition [31] can be utilized to solve this objective function.

(2) Fix WWW ,bbb,FFF , update SSS : When WWW ,bbb,FFF are fixed, the original optimization model Eq. (7)
can be put in the following form,

min
SSS∈Rn×n,SSS∗∗∗111=111,SSS≥000

(
‖SSS−AAA‖2

F+λTr(FFFT LLLSFFF)

)
(11)

which is equivalent to the following

min
Si, j≥0,∑ j Si, j=1

n

∑
i, j=1

(Si, j−Ai, j)
2+

λ
2

n

∑
i, j=1
‖ fff i− fff j‖2

2Si, j (12)

The rows of SSS are independent from each other. Thus, we can solve SSS row by row. For each
row sssi, we have

min
sssi≥0,sssi111=1

‖sssi−aaai‖2
2 +

λ
2

sssidddT
i (13)
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where sssi∈R1×n whose jth element is Si, j, aaai∈R1×n whose jth element is Ai, j, and jth element
of di is ‖ fff i− fff j‖2

2. Eq. (13) can be further formulated as

min
sssi≥0,sssi111=1

‖sssi− (aaai−
λ
4

dddi)‖2
2

= min
x j≥0,∑ j x j=1

‖xxx− vvv‖2
2

(14)

where xxx = sssi, vvv = aaai− λ
4 dddi. ‖xxx− vvv‖2

2 = R2 is a Euclidean ball, and x j ≥ 0,∑ j x j = 1 defines
a hyper-plane. The optimal solution is the tangent point between the Euclidean ball and the
hyper-plane or the angle point of the hyper-lane. We summarize the structure of the solution
in Algorithm 1.

Algorithm 1 Optimization Algorithm of PUFE-OG
1: Input: cluster number c, parameter λ , µ , σ , XXX.
2: Output: learned projection parameters WWW, bbb.
3: Initialization: AAA←AAA0, SSS←SSS0, LLLSSS=Laplace(SSS).
4: repeat
5: fix SSS, update WWW,bbb,FFF:
6: Update FFF according to Eq. (10);
7: Update WWW,bbb according to Eq. (9).
8: fix WWW,bbb,FFF, update SSS:
9: For each row sssi, update it according to Eq. (14).

10: LLLSSS = DDDSSS− SSS+SSST

2 ;
11: until converges

4 Experiments
Datasets & Setup: To evaluate our model, we choose three multiview action recogni-
tion datasets, three face datasets and one handwritten digit recognition dataset. The action
datasets are the IXMAS dataset [27], the newer version of of IXMAS dataset referred to as
NIXMAS, and the partially occluded dataset OIXMAS [28] dataset. The three face datasets
are the JAFFE dataset [13], the UMIST face dataset [4], and the YaleB dataset [3]. We also
use the USPS dataset [9] to validate the performance on handwritten digit recognition. Ta-
ble 1 shows the details of the 7 benchmark datasets, such as the number of instances, the
dimension of each instance, as well as the number of classes.

Datasets Instance No. Dimension Class No.
IXMAS [27] 1789 500 12

NIXMAS [27] 1148 500 11
OIXMAS [28] 1800 500 12

JAFFE [13] 213 676 10
UMIST [4] 575 644 20
USPS [9] 9298 256 10
Yaleb [3] 575 644 20

Table 1: Description of 7 Benchmark Datasets
In the experiment, we found that 15 is a good neighborhood number to build the graph.

For parameters λ , µ , σ , we tune them in the range of [10−3;10−2; ...103]. The dimension of
the low-dimensional space is set to [10;20; ...;100].
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Table 2: Performance comparison (Mean Accuracy% ± Standard Deviation)
IXMAS NIXMAS OIXMAS JAFFE UMIST USPS Yaleb

Raw Feature 20.99±2.40 20.64±0.86 18.47±0.95 73.29±7.27 41.56±2.47 65.08±2.34 11.73±0.80
PCA 21.11±2.42 20.50±0.80 18.63±0.96 73.18±7.20 43.29±2.52 66.31±2.36 11.71±0.71
Atuo Enc. [23] 25.59±2.33 22.30±0.14 16.39±1.09 67.81±5.17 37.58±2.42 46.90±0.79 7.33±0.68
NPE [5] 19.44±2.32 19.10±0.68 18.78±1.05 75.25±7.92 40.93±2.44 62.74±2.71 20.70±1.18
LPP [17] 22.57±2.03 19.84±0.80 18.53±0.73 79.28±7.81 44.50±2.74 68.62±3.48 28.89±1.51
PUFE [16] 28.28±1.71 21.46±0.54 20.94±0.58 80.98±8.39 55.01±2.65 71.17±3.64 45.07±2.47
PUFE-OG 28.59±1.72 24.02±0.52 21.50±0.77 83.30±7.24 71.13±1.18 75.22±2.65 60.05±2.43

Table 3: Performance comparison (Mean NMI% ± Standard Deviation)
IXMAS NIXMAS OIXMAS JAFFE UMIST USPS Yaleb

Raw Feature 27.14±2.73 15.91±0.97 16.78±2.11 80.08±5.06 64.10±1.76 66.97±0.86 16.48±1.09
PCA 27.11±2.81 15.79±0.77 16.95±2.04 80.18±4.92 63.86±1.71 61.03±0.81 16.54±0.98
Atuo Enc. [23] 25.59±1.99 20.34±0.04 13.89±1.03 75.26±2.57 54.04±1.96 42.49±0.14 9.64±0.67
NPE [5] 25.09±2.62 12.60±0.76 19.03±2.09 82.53±4.43 61.01±2.01 59.42±1.36 27.06±0.97
LPP [17] 28.19±2.62 12.97±0.96 14.38±0.11 86.47±4.33 62.79±2.25 65.37±0.99 41.10±1.00
PUFE [16] 31.75±2.64 16.90±0.86 23.53±0.58 86.44±5.05 74.51±1.46 70.82±1.64 56.85±1.59
PUFE-OG 33.68±2.15 28.83±0.65 24.95±1.23 88.47±4.54 86.71±2.26 73.71±0.85 73.14±1.61

Experimental Results: To evaluate the performance with its projection ability, we compare
it with raw feature, PCA, denoising auto-encoder (pretraining stage) [23], Neighbor Preserv-
ing Embedding (NPE) [5], Locality Preserving Projections (LPP) [17], as well as the PUFE
[16] without optimal graph. To evaluate the projection ability of each method, we first learn
the projection matrix and obtain the corresponding low-dimensional representations. Then
we rely on K-Means to do the clustering. The result is shown in Table 2 and Table 3. We run
the K-Means 100 times each time, and report the average value and standard deviation in the
table.

The experimental results are listed in Table 2 and Table 3. We can observe that the perfor-
mance of our method is consistently better than the others under different evaluation metrics.
We also observe that:
• The graph based dimensionality reduction methods (NPE, LPP, PUFE, PUFE-OG) usually
achieve better performance compared with PCA and raw feature. This observation suggests
that low-dimensional representations can have better performance if it is based on a weighted
graph which contains the structure information of the local cliques.
• The performance of PCA is always similar to the performance of raw feature. Sometimes
it has little improvement or inferior performance compared with the raw feature. The under-
lying reason of the observation is that PCA does not preserve the manifold smoothness.
• Denoising auto-encoder have relatively better performance for the first two datasets than
the raw feature. This observations suggests that denoising auto-encoder is robust to view
changes compared with other methods. However, it fails capturing the inter-class difference
of other datasets and has the worst performance among all the methods.
• PUFE always outperforms LPP and NPE and it is very stable across all the datasets. This
is because PUFE relaxes the rigid projection form, namely, FFF=XXXTWWW , to a more flexible ver-
sion, which is FFF≈XXXTWWW+111bbbT .
• Our PUFE-OG consistently outperforms other graph based algorithms and it is very stable.
This advantage is attributed to the optimal neighborhood probability graph construction.
• The data in UMIST is more regular compared with other datasets. Thus, its manifold struc-
ture is more label consistent (the samples from the same cluster are lying close by). Then
the improvement in accuracy is higher compared with other datasets.
Parameter Sensitivity Analysis: We choose UMIST dataset to study the sensitivity of the
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Figure 1: Results of Projection with Different Dimensions on 3 Benchmark Datasets
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Figure 2: Parameter sensitivity analysis: (a,b,c) show the best accuracy result when one of
the three parameters λ ,µ,γ is fixed

parameters. UMIST has 20 classes, and it consists of 575 images with the dimension of 644.
The best clustering accuracy is obtained when λ= 10,µ= 0.001,γ=1000.

We study the sensitivity of the three parameters by fixing one of them to the optimal
settings. Figure 2 shows the clustering accuracy. From Figure 2(a), we can observe that
when λ is fixed, a smaller µ and a larger γ can lead to a better performance. Figure 2(b)
shows that λ is more sensitive than γ and its optimal setting is λ = 10. A similar result can
be observed in Figure 2(c). To sum up, λ is the most sensitive parameter, and a smaller µ
and larger γ can lead to a better performance.

We also test the sensitivity of the reduced dimensions of the low-dimensional space. As
shown in Table 2, the most stable methods across different benchmark datasets are PCA,
LPP, PUFE, and PUFE-OG. Thus, we mainly focus on these 4 methods. Figure 1 shows
the results on 3 benchmark datasets. We can observe that PUFE and PUFE-OG have better
performance when the reduced dimension is low. The performance of PCA and LPP become
better as the dimension increases. But different from PCA and LPP, a high dimension de-
grades the performance of PUFE and PUFE-OG. This is because the quality of the manifold
structure has a great influence to the performance. The local manifold structure is often more
reliable (the k nearest neighbors are more likely from the same cluster when k is small) and
the distance can be approximated to be linear for the local structure. When the dimension is
low, PUFE-OG will focus on learning the local manifold structure and yield a significant per-
formance gain. However, when dimension is too high, the linear measurement will become
inaccurate. Then the performance will drop dramatically. Thus, PUFE-OG is more sensitive
to dimension change compared with other methods, and a low dimension is preferable for
PUFE-OG.
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5 Conclusion
To cope with the out-of-sample problem, most unsupervised graph based dimension reduc-
tion techqiues integrate the ridge regression term with the manifold regularizer. The perfor-
mance of these graph based methods highly depends on the input affinity matrix. However,
the graph might be sub-optimal for dimension reduction. To tackle this problem, we propose
a novel projective unsupervised flexible embedding framework by constructing an optimal
graph.

Instead of using the affinity matrix to build the graph, we construct a probability graph
based on the Gaussian similarity graph. The probability graph is more smooth. Thus, an
optimal graph can be learned and the experimental results prove that our PUFE-OG model
always outperforms the other projective dimension reduction techniques. We derive an ef-
ficient algorithm to solve the problem. The extensive experiments demonstrate the effec-
tiveness and the stability of our model. This optimal graph construction method can also be
applied to other graphs, such as l1 graph [30] and LLE graph. In the future, we will explore
its application in other graph based methods, as well as its application in the semi-supervised
setting.
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