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Abstract
The reconstruction of 3D object shape from monocular image is inherently an ill-

posed problem. And it suffers significant performance degradation when large errors are
present. In this paper, we propose a robust model to estimate 3D shape from 2D land-
marks with unknown camera pose. The 3D shape of the object is assumed as a linear
combination of predefined shape basis. To handle severely contaminated observations,
we explicitly model the outliers as sparse noise. The objective function hence is non-
convex and non-smooth constrained on Stiefel manifold, where the coupling of the un-
known shape representation coefficients and camera pose makes it more difficult to solve.
We then propose a numerical algorithm based on Alternative Direction Method of Mul-
tipliers to optimize it. We set the orthogonality constraints into the smooth sub-problem,
which admits a closed-form solution. The proposed algorithm can achieve convergence
rapidly. Experimental results both in controlled experiments and on real data show that,
the proposed method outperforms the other methods.

1 Introduction
Recently, 3D object models have been received much attention for object recognition [15,
19], face model [4, 9, 22] and pose estimation [3, 11, 30]. The utilization of geometric
structure can help to capture great intra-class variations of the object. An essential procedure
in these works is to establish a 3D model and fit it into the 2D image plane. Geometrically,
it is an inverse-problem to estimate the 3D geometry from their projections in a monocular
2D image. To resolve this kind of ambiguity, the common approach is to introduce priori
information of the 3D shape. In this paper, we focus on a kind of widely used 3D global
geometry model as shape prior. This model is defined as a collection of ordered vertices or
landmarks, which is originated from “active shape model" (ASM) [8]. Followed the ASM,
each shape is assumed to be represented as a linear combination of some predefined basis
[20, 31, 32]. A typical framework for 3D car shape estimation is shown in Figure 1. In this
paper, we focus on the modular in the dash block.

There are two main challenges when fitting such a kind of 3D model to 2D image. First,
the 2D observations are usually acquired on cluttered “in-the-wild" images. To find the land-
marks, contemporary methods train discriminative detectors for each local part [3, 18] or use

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 99.1-99.11

DOI: https://dx.doi.org/10.5244/C.30.99

https://dx.doi.org/10.5244/C.30.99


2 MIAO, TAO, LU: ROBUST 3D CAR SHAPE ESTIMATION

kind of cascaded regression-based methods to encode the 2D geometry [28]. These works
achieve successful results, however, this problem is still not fully solved. The landmarks are
always inaccurately detected due to occlusions or clutters under complex environment and
illumination conditions, which can affect the shape estimate. Second, the objective function
for 3D shape estimating is usually highly non-linear [20, 32] and non-convex. It is strongly
influenced by the initialization quality, and each of the initializations might get stuck a local
optimal solution [13, 20]. In addition, if both camera pose and the object shape are unknown,
the problem becomes much more difficult. To improve the initialization, some works have
tried to use multiple start points [25, 32] or multi-scale scheme [17]. Yet, the time to achieve
convergence may be increased, and the performance can still degrade due to bad initializa-
tions.
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Figure 1: The framework for 3D shape estimation. Top: A series of prior 3D shape basis
[19]. Bottom: The shape estimation procedure from 2D landmarks for a given input image.

In this paper, we investigate robust model to handle outliers and develop efficient algo-
rithms. We first propose a robust model to estimate both 3D shape and the camera pose for
rigid-body object, from the 2D observed landmarks. We assume the observations are con-
taminated by two kind of noise. One is dense noise in measurement, and the other is sparse
noise. We encode the sparsity by use of `1-norm as a surrogate of cardinality, which can ef-
fectively model the large errors in 2D landmarks detection. In order to solve the non-convex
and non-smooth problem, we then propose an efficient numerical method based on alternat-
ing direction method of multipliers (ADMM). The orthogonality constraints are set into the
sub-problem, where we can get a closed-form solution. The proposed algorithm has also a
fast convergence rate. Experimental results demonstrate that, the proposed model is robust
to outliers and shows competitive results.

The remainder of this paper is structured as follows. Section 2 introduces some related
works. In Section 3, we introduce the proposed robust model and formulate the problem.
We then describe the proposed numerical algorithm in detail to solve the problem in Section
4. In Section 5, we do quantities of experiments to validate the effectiveness of the proposed
model and algorithm. The last section draws a conclusion.

2 Related Works
Our method is related to recent works including the 3D shape model representation and
estimation, and optimization on manifolds. To use this kind of model, part-based object rep-
resentations [10] are widely used for modelling each landmark appearance under a number
of discrete viewpoints. Some other methods such as discriminative [18, 22] or regression-
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based methods [21, 28] can also be utilized. In our work, we assume the 2D landmarks are
given previously by any possible method.

The related works about 3D geometry reasoning can be roughly categorized into two
classes: non-rigid (e.g. body, face) shape estimation and rigid object shape estimation (e.g.
car). For non-rigid objects, the main challenge is the great structural variations of the shape.
Some works [2, 24] customize model for 3D human pose recovery, which are not for shape
reconstruction. Ramakrishna et al. [20] represent the 3D shape as sparse embedding in an
over-complete dictionary and estimate the model using projected matching pursuit. Wang et
al. [25] extend their work via `1-norm to measure the matching errors to handle inaccurate
2D joints. Recently, Zhou et al. [31] have proposed a convex-relaxation approach, where
each shape basis is rotatable in their model and achieves appealing results with arbitrary
initialization. This method, however, is not robust to outliers in observation. In contrast,
we try to establish a model to cope with the interference from large errors. For rigid object,
Leotta et al. [17] propose a deformable model combined mesh and points sampled from
CAD models, and fit the parametrized-model to images by minimizing the error between
hypothesised edges to observed edges. Both [32] and [19] use a ASM-like model which
are more related to our work. Zia et al. [32] train discriminative detectors to localize 2D
landmarks and estimate the 3D pose use a sample-based hill-climbing scheme. This method
need to evaluate many hypotheses which lead to high time consumption. In contrast, we aim
to develop more efficient algorithm to match model into 2D image.

The proposed optimization algorithm is related to some recent advances about optimiza-
tion on orthogonality constraints. Orthogonal Procrustes [23] and other optimization prob-
lems on Stiefeld manifolds have been studied [1]. Recently, Wen et al. [26] propose a curvi-
linear descent path for generic manifold optimization. Inspired by Bregman iteration, Lai
et al. [16] propose a splitting orthogonal constraints method. Boumal et al. [6] release a
generic MATLAB toolbox to solve smooth optimization problems on various manifolds. All
these methods focus on smooth optimization on different manifolds, however, in our prob-
lem, both the 3D shape and camera pose are unknown, and the shape representation term
is non-smooth. The coupling of them makes the problem hard to be solved. Therefore, the
above method can not be directly applied to our problem. Some works [14, 29] focus on
the non-convex optimization based on ADMM [7]. The convergence properties of ADMM
method for minimization on Stiefel Manifold have been studied [29]. In our work, inspired
by their results, we investigate to use ADMM to solve the non-convex, non-smooth problem
with orthogonality constrains.

3 Problem Formulation

Given the coordinates of p 2D landmarks x∈R2×p, and a series of 3D priori shapes {Xi}N
i=1 ∈

R3×p with mean shape µ ∈R3×p, we pursue the real 3D shape X of the object. The 3D model
consists of predefined points, each of which has the same semantic meaning. Assume X is
represented as a linear combination of pre-defined shape basis X = ∑N

i=1 siXi + µ , where
s = [s1, . . . ,sN ]

T ∈ RN are the shape coefficients, and µ is the mean 3D shape. To simplify
the problem, we use a weak perspective camera model, where the camera matrix is denoted
by

P=

[
αx 0 0
0 αy 0

]
R. (1)
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The rotation matrix R is in the set of spherical orthogonal group SO(3) = {R∈R3×3,RTR=
I,det(R) = 1} [12]. Constant αx,αy are the scale of the axis, which depend on the camera
intrinsic parameters. In this paper, we assume the camera intrinsic parameters (e.g. the
camera focal length) are known a priori and the scale αx = αy = 1 in P. Then the camera
matrix is given by M= I2×3R.

Now, the shape estimation problem is equivalent to estimate the shape representation
coefficients s and the unknown camera pose M. We try to minimize the error between the
observations x and the projected points MX. Assume that there are Gaussian noises between
the observations and the projected model points. Then, the objective function for 3D shape
estimation can be formulated as

min
s,M

1
2

∥∥x−M
(
∑N

i=1 siXi +µ
)∥∥2

F +λ‖s‖1

s.t. MMT = I2,
(2)

where I represents the identify matrix and λ is the regularization parameter.
There are always large errors when the landmarks are inaccurately detected, which result

from the complex background and illumination conditions. To address this problem, we
propose a robust 3D shape estimation model. We explicitly model the outliers by introducing
an additional sparse error term E ∈ R2×p. We encode the sparsity by use of `1-norm as a
surrogate of cardinality. In this situation, the data cannot be pre-centralized, therefore, we
must also estimate the translation t ∈ R2×p. Thus, the robust model is then formulated as

min
s,M,E,t

1
2

∥∥x− t−M
(
∑N

i=1 siXi +µ
)
−E

∥∥2
F +λ‖s‖1 +η‖E‖1

s.t. MMT = I2,
(3)

where t = [tx, ty]T ·11×p and η is the regularization parameter. We will describe the estima-
tion algorithm detail in the following section.

4 Method

Problem (3) is a non-convex optimization problem on the Stiefel manifolds with `1-norm
regularized, which is non-smooth. Moreover, the coupling of the camera matrix and the
shape representation coefficients make it difficult to solve problem (3). In this section, we
propose an algorithm based on the alternating direction method of multipliers for problem
(3). We first introduce a lemma which is useful for solving sub-problems in the subsequent
algorithms.

Lemma 1. For the following orthogonal constrained Least Square problem

min
X

1
2 ‖X−Y‖2

F

s.t. YYT = I2,
(4)

where X ,Y ∈ R2×3. The optimal solution is given by X∗ =UI2×3VT, where U,V satisfying
the SVD factorization Y =UDVT and D is the diagonal matrix. �
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4.1 Proposed Algorithm
A prevailing method is an iterative method called coordinate descent algorithm (CD) or
alternative minimization. The basic idea is that, each iterate is obtained by fixing most com-
ponents of the variable vector at their values from the current iteration, and approximately
minimizing the objective with respect to the remaining components [27]. The coordinate
descent algorithm shows good performance. Here, we introduce a novel numerical method
based on ADMM which is more efficient. For problem (2) and (3), a key consideration is
that how to deal with the orthogonality constraints. Some work estimate the camera matrix
by solving a procrustes problem [20] or by splitting two orthogonal rows of the camera ma-
trix and updating alternatively [25], which is not very efficient. In the proposed algorithm,
we set the orthogonality constraints into the sub-problem, which can be simply solved in
closed-form. The other sub-problems are well-known and can be solved easily. We present
our method in detail in the followings.

First, we define an auxiliary variable V ∈ R2×3 and consider the equivalent optimization
problem,

min
s,M,V,E,t

1
2

∥∥x− t−M
(
∑N

i=1 siXi +µ
)
−E

∥∥2
F +λ‖s‖1 +η‖E‖1

s.t. M=V,
VVT = I2.

(5)

Then the augmented Lagrangian is

L(M,V,s,E, t,Λ) =
1
2

∥∥∥∥∥x− t−M

(
N

∑
i=1

siXi +µ

)
−E

∥∥∥∥∥

2

F

+λ‖s‖1 +η‖E‖1+< Λ,M−V >+
τ
2
‖M−V‖2

F , (6)

where Λ is the multiplier and the τ is the penalty parameter. We update each block with all
the others are fixed. Superscript k indicates the iteration number.
Solve M,E, t. For M-minimization step, we have

M(k+1) = argmin
M

1
2

∥∥∥MX+E(k)+ t(k)−x
∥∥∥

2

F
+<Λ(k),M−V (k) >+

τ(k)

2

∥∥∥M−V (k)
∥∥∥

2

F
, (7)

where X = ∑N
i=1 s(k)i Xi + µ . This step admits a closed-form solution. Let ∂L(M)/∂M = 0,

we get

M(k+1) =
[
(x− t(k)−E(k))XT+ τ(k)V (k)−Λ(k)

]
·
(

XXT+ τ(k)I
)−1

. (8)

To extract the outlier pattern E, we update E using element-wise soft-thresholding [5] by
simple calculus, which produces

E(k+1) = Tη

[
x− t(k)−M(k+1)X

]
, (9)

where Tα(x) = sign(x)(|x|−α)+ is a shrinkage operator.
The translation t is easy to calculate, and t = [tx, ty]T is given by the mean value of

x−E(k+1)−M(k+1)X along the row. Therefore, we can get t(k+1) = t ·11×p.
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Solve s,V . To solve the shape representations s, we first let y = vec([x− t−E−Mµ]) and
Φ = (I⊗M)B, where B = [vec(X1) ,vec(X2) , . . . ,vec(XN)], and ⊗ denotes the Kronecker
production. Then, we can re-arrange the sub-problem as

s = argmin
s

1
2
‖Φs−y‖2

2 +λ‖s‖1, (10)

which is a standard Lasso problem. We solve it by use of FISTA [5] due to its efficiency. In
the next, the V -minimization step is

V (k+1) = argmin
V

{∥∥∥V −
(
M(k+1)+ Λ(k)

τ(k)

)∥∥∥
2

F
: VVT = I2

}
. (11)

By Lemma 1, the closed-form solution is given by

V (k+1) =UI2×3W T , (12)

where U and W satisfy [U,S,W ] = SVD
[
M(k+1)+Λ(k)/τ(k)

]
.

Update Λ,τ . At last, the multipliers are updated by Λ(k+1) = Λ(k)+ τ(k)(M(k+1)−V k(+1))
and the penalty parameter τ is updated according to the suggestions in [7] by a varying
manner. �

The properties of convergence for non-convex problems by ADMM have been discussed
in [29]. If there are more than two blocks to be updated in the procedure, the convergences
can not be always guaranteed, which may be influenced by the update ordering. We find
that the update ordering as specified in the Algorithm 1 can lead convergence. The proposed
algorithm shows a fast convergence rate.

Algorithm 1: Robust Shape Estimation by ADMM

Input: 2D landmark positions x, 3D basis {X}N
i=1, regularization parameters λ ,η

Output: M, s, E, t
1 Initialize s, M, E and t;
2 repeat
3 Update M according to Eq. (8);
4 Update s by solving Eq. (10);
5 Update V according to Eq. (12);
6 Update E according to Eq. (9);
7 Update t← mean [x−E(k+1)−M(k+1)X] ·11×p;
8 Update Λ,τ ;
9 k← k+1;

10 until convergence;

5 Experiments
To validate the capability of the proposed algorithm, we evaluate the proposed method in
controlled experiments and on some dataset real image data. The only adjustable parameters
in our proposed algorithm are the regularization parameters λ and η . By parameter selec-
tion, we set λ = 0.1 and η = 0.01. In purpose of comparison, we implement the widely-used
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Coordinate Descent method (referred as CD) [20], and a convex relaxation method [31] (re-
ferred as CVXR), which shows the most state-of-the-art, where the corresponding parame-
ters are set as suggested. In purpose of fairly comparison, the stop criterion and initializations
are set the same.

5.1 Dataset
3D Data. The 3D car shape data we used is adopted from Zia introduced in [32]. Their wire-
frame exemplar is defined as a collection of ordered vertices residing in 3D space. Each
exemplar is chosen from the set of vertices, which make up a 3D CAD model with topology
pre-defined. There are total 36 vertices for each 3D exemplar. In this paper, we use 30
exemplars to form the 3D shape basis.
Test Image Data. We use the car dataset from MIT Street Database1. We annotate the
images as suggested in [18]. All the labelled data are roughly divided into 5 different views,
which are 900 frontal view, 1400 frontal-side view, 800 profile view, 1200 rear-side view,
and 1160 rear view images. The images are labelled by 8,14,10,14,8 landmarks for each
view respectively. We randomly select 50 percentage of each view for test.

5.2 Experiment in control
We first evaluate the performance on no-outlier case, where the ground-truth are regarded
as inputs directly. The basis number is fixed to 18 in each case. To show the efficiency of
the proposed method, we first compare the iteration times under different amount of obser-
vations. We repeat 10 times at a specified observation number, and each time we randomly
select the points from all the available landmarks as inputs. In Figure 2, we show the average
iteration number on Crossover and Sedan. The results demonstrate that our algorithms, need
less iterations to achieve convergence under different amount of observations for different
types of the car.
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Figure 2: Average iteration numbers under different amount of observations for Crossover
and Sedan. One standard deviation is preserved.

We use root-mean-square error (RMSE) of the landmark localisation to evaluate the es-
timation accuracy. Figure 3 shows the cumulative distribution of the landmarks localisation
errors. From the results, we can see that these three method have similar performances with-
out any outliers in the observations, where the proposed method still performs the best.

1http://cbcl.mit.edu/software-datasets/streetscenes/
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Then, to investigate the ability to deal with outliers, by use of the proposed robust model,
we randomly select some portions of the visible landmarks and add large shift to these points.
For each test sample, we repeat this procedure 10 times. Figure 3 shows the average esti-
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Figure 3: Left: The cumulative distribution for localization errors. The y-axis represents
the ratio of the test samples, whose errors are no less than the corresponding value in x-axis;
Right: Error versus different percentage outliers.

mation error under added large errors, with one standard deviation preserved. The proposed
model is obviously robust for different percentage of added outliers. Especially, when there
are more outliers, the proposed method achieves better performance.

5.3 Test on real data

To evaluate the applicability of the proposed robust model, we examine it on MIT street
dataset. The selected test images are all resized into 700×700 pixels.
Landmark Detection. To detect the 2D landmarks, we first generate the local patches for
feature extraction. For each landmark, we extract a 40×40 image patch as a positive patch,
and 30 negative patches with their centred pixels apart from the true landmark at least 10
pixels. We then compute HoG descriptors on each extracted patch to describe the local
appearance. These features are fed to SVM discriminative classifiers to independently learn
a detector for each visible landmark. We then train a logistic regressor to map the output
of the classifier to the range from 0 to 1. In the test stage, the position of each landmark is
determined according to the response map from the corresponding classifier and regressor.
The bounding-box of the car is precomputed by DPM [10] as assist information to accelerate
the detection.

Figure 4 shows the results of landmark localisation and 3D shape estimation. Results
show that the proposed model can handle the outliers more efficiently. Even if there are
error detection points, the proposed method can recovery the 3D shape well. As a matter of
fact, it is hard to just use these independent detectors to acquire good detection results. The
performance can be improved with some other efficient landmarks detection method. From
the results, we can see that the visualized 3D shapes may not seem very pleasant. The reason
is that, the simple wireframe cannot fully describe the detail shape information of the car.
In the future, we will define more points to represented the 3D shape, and investigate the
estimation performance under different number of observed landmarks.



MIAO, TAO, LU: ROBUST 3D CAR SHAPE ESTIMATION 9

Figure 4: Estimates results on MIT Street Dataset. From left to right, the results are given
by CD, CVXR, and the proposed method, where l denotes the detected landmarks, and the
estimated and ground-truth landmarks are marked as l and l respectively.

6 Conclusions
In this paper, we have proposed a robust model to handle the outliers in observations, when
estimating 3D car shape from 2D landmarks in monocular image. We model the outliers as
sparse noise and encode them explicitly by use of `1-norm as a surrogate of cardinality. To
solve the non-convex and non-smooth problem effectively, we propose a numerical method
based on ADMM. The orthogonality constraints are set into sub-problem, which admits a
closed-form solution. The proposed algorithm achieves a very fast convergence rate. Exper-
imental results have shown better performances in controlled experiments and on real data,
compared with the-state-of-the-art.
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