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Figure 1: The framework for 3D shape estima-
tion. Top: A series of prior 3D shape basis [2].
Bottom: The shape estimation procedure for a
given input image.

Estimation of the 3D shape of a object from
monocular image is an under-determined prob-
lem, which becomes harder when the observa-
tions are severely contaminated. In this paper,
we propose a robust model to estimate 3D shape
X from 2D landmarks x ∈ R2×p with unknown
camera pose M. The 3D shape of the object is
assumed as a linear combination of predefined
shape basis {Xi}N

i=1 ∈ R3×p weighted by s =

[s1, . . . ,sN ]
T ∈ RN . To estimate s and M, we fit

the model by minimizing the error between the
observations x and the projected model points
MX (as shown in Figure 1).

Model. To address the outliers in the ob-
served 2D points, which result from the complex
background and illumination conditions, we pro-
pose a robust 3D shape estimation model. We
explicitly model the outliers with an additional
sparse error term E ∈ R2×p. Thus, the robust
model is then formulated as

min
s,M

1
2
‖x− t−MX−E‖2

F +λ‖s‖1 +η‖E‖1︸ ︷︷ ︸
non-smooth

(1)
s.t.

non-convex︷ ︸︸ ︷
MMT = I2 ,X =

N

∑
i=1

siXi +µ

where t = [tx, ty]T · 11×p is the translation, and
λ ,η are the regularization parameters, and µ is
the mean shape. The objective function in (1)
is non-convex and non-smooth constrained on

Stiefel manifold, where the coupling of the un-
known shape representation coefficients s and
camera pose M makes it more difficult to be
solved.

Method. We propose an efficient numer-
ical algorithm based on Alternative Direction
Method of Multipliers (ADMM) [1] to solve this
problem. With an auxiliary variable V ∈ R2×3

introduced, the augmented Lagrangian is,

LM,V,s,E,t,Λ = 1
2 ‖x− t−MX−E‖2

F +λ‖s‖1
+η‖E‖1+< Λ,M−V >+ τ

2 ‖M−V‖2
F

s.t. M=V,VVT = I2,X = ∑
N
i=1 siXi +µ

where Λ is the multiplier and τ is penalty param-
eter. We update each block with all the others
fixed. Based on some analysis on non-convex
optimization of ADMM [3], we set the orthog-
onality constraints into the smooth sub-problem
(V -minimization),

min
V
{‖V − (Mk +Λ

k/τ
k)‖2

F : VVT = I2}.

The closed-form solution is given by V k+1 =
UI2×3W T , where U and W satisfy [U,S,W ] =

SVD
[
Mk +Λk/τk]. The other sub-problems

can be easily solved. Both the optimization of M
and t admit closed-form solutions. The updating
of s is a Lasso-problem, and the sparse error pat-
tern E can be efficiently solved by element-wise
soft-thresholding. The convergences of ADMM
with more than two blocks cannot be always
guaranteed [1], and may be influenced by the up-
date ordering. We set a fixed update ordering
that can always lead convergence in our experi-
ments.
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